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HOW OUTFLOWS AND RADIATIVE FEEDBACK LIMIT ACCRETION ONTO MASSIVE STARS
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Massive star formation is [likely] a scaled up version of low-

mass star formation
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IRDCs can fragment into dense,
massive clumps which then
fragment into massive pre-
stellar cores.

Massive pre-stellar cores are
supported by furbulent pressure
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(e.g., Pillai+2011, Tan+2013, Battersby+2014, Lu+2015, Zhang+2015, Ohashi+2015)



Isotropic accretion leads to the radiation pressure barrier
problem in massive star formation

Formaftion of massive stars is a competition between 8
gravity and (direct+indirect) radiation pressure
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(e.g., Larson & Starrfield 1971, Kahn 1974, Yorke 1979, Yorke+1995, Wolfire & Cassinelli 1986, 1987; Yorke & Bodenheimer 1999)



Modeling massive star formation
requires multi-dimensional
radiation-hydrodynamic
simulations



Modeling radiation pressure in (massive) star formation simulations

Hybrid Adaptive Ray-Moment Method (HARM?Z):
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Absorption of (multi-frequency) stellar radiation field:

Radiative Transfer Luminosity absorbed | Weingariner & Draine (2001) #, = 5.5
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Overcoming the radiation pressure barrier
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Mass delivered to star via infalling dense fillaments, radiative
Rayleigh Taylor (RT) instabilities, and disk accretion.

High accretion rates and infalling flaments provide sufficient
ram pressure to overcome radiation pressure.




Overcoming the radiation pressure barrier
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Mass delivered to star via infalling dense fillaments, radiative
Rayleigh Taylor (RT) instabilities, and disk accretion.

High accretion rates and infalling flaments provide sufficient
ram pressure to overcome radiation pressure.




Collimated bipolar outflows are ubiquitous in (low-mass and)
high-mass star formation
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Powerful jets from accreting stars can drive wide angle molecular
outflows from star-forming cores and eject core material



Massive star formation with

radiative and outflow feedback
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Top panel: (40,000 AU x 40,000 AU)
Bottom panel: (8,000 AU x 8,000 AU)
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Outflows punch holes in ISM along the star’s polar directions allowing

radiation to escape, thereby reducing the development of RT instabilities.
Thin Density Projections:
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M, [M, yrY

Outflows+radiation pressure efficient at ejecting material away
from the star than radiation pressure alone.
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Disks are crucial to massive star formation,
especially at late times.

<Turbulent Fragmentation —
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Outflows drive out entrained gas, eventually unbinding the core

Radiation Only
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Feedback from outflows allows radiation to escape, thereby
reducing radiative heating.



..BUT WAIT! What about magnetic fields?
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Observations suggest that dense molecular gas has pep~2
(supercritical).

Magnetic pressure will slow down collapse and reduce fragmentation.



Magnetic braking removes angular momentum resulting in a smaller
disk. Fragmentation is highly suppressed.
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Inclusion of magnetic fields reduces final stellar mass by ~20% @ t=0.9 ts



Entrained molecular outflows are collimated, but have wider
opening angles when magnetic fields are included
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Entrained molecular outflows are collimated, but have wider
opening angles when magnetic fields are included
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Entrained molecular outflows are collimated, but have wider
opening angles when magnetic fields are included
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Entrained molecular outflows are collimated, but have wider
opening angles when magnetic fields are included
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...BUT WAIT! What about fast, isotropic radiatively driven
winds? Caution: Preliminary results .... Stay tuned!
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Fast, Isotropic winds should shock heat gas yielding Tgas=z 106 K,
gas adiabatically expands reducing dM/dt



...BUT WAIT! What about fast, isotropic radiatively driven
winds? Caution: Preliminary results .... Stay tuned!
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Magnetic pressure confines winds, reducing shock heating and
adiabatic expansion — larger p and ¢, such that dM/dt increases.

Magnetic to Thermal Pressure
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Preliminary results .... Stay tuned!



Magnetic pressure confines winds, reducing shock heating and
adiabatic expansion — larger p and ¢, such that dM/dt increases.
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Summary

Performed 3D R(M)HD simulations of the formation of massive
stellar systems from the collapse of tfurbulent massive pre-stellar
cores with radiative and outflow feedback.
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Inclusion of feedback by ouiflows in addition to radiation

pressure:

* Reduces effective mass growth by ~10% than radiation
alone.

* Ejects jet and entrained material from core, results in
unbinding core.




Summary

Performed 3D R(M)HD simulations of the formation of massive
stellar systems from the collapse of tfurbulent massive pre-stellar
cores with radiative and outflow feedback.
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Inclusion of feedback by ouiflows in addition to radiation
pressure:

* Reduces effective mass growth by ~10% than radiation
alone.

* Ejects jet and entrained material from core, results in
unbinding core. O

M, =32.72 Mo M. =32.71 Mo

Inclusion of magnetic fields in MSF:
* Slows down the growth of massive stars

* Significantly reduces formation of companions
via turbulent fragmentation.

e
yd * Leads fo wider collimated molecular outflows.

* When winds are included, leads to a positive
(¢) feedback effect (at least at early times)
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