

Provenance Support for Distributed Scientific Data Analysis

Ali Shaikh Ali and <u>Omer F. Rana</u> School of Computer Science & Welsh eScience Centre Cardiff University, UK

o.f.rana@cs.cardiff.ac.uk

From: Luc Moreau

(U Southampton)

The provenance of a piece of data is the process that led to that piece of data

- We represent the provenance of some data by documenting the process that led to the data:
 - documentation can be complete or partial;
 - it can be accurate or inaccurate;
 - it can present conflicting or consensual views of the actors involved;
 - it can provide operational details of execution or it can be abstract.

Questionnaire distribution

Questionnaire feedback

- 11 projects, many with real deployed services
 - Organ Transplant Management application,
 - TENT system,
 - eDiamond project,
 - Healthcare and Life Sciences Framework,
 - CombeChem,
 - myGrid,
 - GENSS,
 - Traffic Management Application (K-WFGrid project),
 - DataMiningGrid,
 - UniGridS,
 - Diligent
- Questionnaire, application descriptions, scenarios, Provenance usage

Data Analysis Requirements

- Data formats
 ARFF, CSV
- Data access (local and remote)
 File vs. streamed
- Algorithm + choice of algorithm
- Multi-perspective analysis
 Visual feedback, text output
- User support
 - Graphical interface
- Validation support

•DiscoveryNet (Imperial College) – Yike Guo et a.

•GridMiner (U Vienna) -- Peter Brezny et al.

myGrid (Manchester)-- Carol Goble et al.

- •VEGA (CNR)
- -- Domenico Talia et al.

Others:

Clementine, Matlab-basedTools, IRIS-Explorer-based

Objectives

- Use of Web Services composition with distributed services
 - Wrap third party services (Mathematica, GNUPlot)
 - WEKA Service template
 - Triana Workflow
- Services provided by third parties
 - WSDL interfaces (avoid use of specialist languages unless really necessary)
 - SOAP-based message exchange
 - Use of attachments
- Access to local and remote data sets
 - Support for data streaming
- Wrapping of existing algorithms (important requirement)

Software

trianacode.org

- An open source Problem Solving Environment developed at Cardiff
- Triana includes a large library of pre-written analysis tools and the ability for users to easily integrate their own tools.
 - Supports discovery of Web Services based on syntax (hardwired UDDI registries)

Related work: Grid WEKA (University College Dublin) WS-Weka (DEIS, Italy)

www.cs.waikato.ac.nz/ml/weka/

- Collection of machine learning algorithms
- Contains tools for

 \succ

- data pre-processing,
- classification, regression,
- clustering,
- association rules
- Accepts ARFF (Attribute-Relation File Format) file format -- an ASCII text file that describes a list of instances sharing a set of attributes.

http://www.GridLab.org/

WEKA Algorithms

- Classifiers Algorithms
 - Bayes (8, eg. Naïve Bayes)
 - Functions (12, eg. Neural Networks)
 - Lazy (5 e.g. Instance-based Learning)
 - Meta (23, eg. Bagging, Multiclass Classifer)
 - Trees (10, eg. ID3)
 - Rules (10, eg. Conjunctive Rule)
 - Misc (3)
- Clustering Algorithms (5, e.g. Kmeans)
- Association Rules (2, e.g Apriori)

- Data Processing
 - Filters
- Attribute Selection
 - Attribute Evaluator (12, eg. Principle Components)
 - Attribute Search (8, eg. Genetic Algorithm)

ARFF Overview

- Name of the relation
- List of the attributes
- Attributes types

@RELATION iris
@ATTRIBUTE sepallength NUMERIC
@ATTRIBUTE sepalwidth NUMERIC
@ATTRIBUTE petallength NUMERIC
@ATTRIBUTE petalwidth NUMERIC
@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-virginica}

@DATA 5.1,3.5,1.4,0.2,Iris-setosa 4.9,3.0,1.4,0.2,Iris-setosa 4.7,3.2,1.3,0.2,Iris-setosa 4.6,3.1,1.5,0.2,Iris-setosa 5.0,3.6,1.4,0.2,Iris-setosa

Architecture

FAEHIM Web Services

- Classification Web services
 - Obtained from the WEKA toolkit
- Clustering Web services
 - Obtained from the WEKA toolkit
- Associating rules Web services.
- Mathematical Web services
 - MathLink to Mathematica (uses a pre-defined notebook)
- Others (DIPSO Project):
 - Modeller
 - Uses a parametric analysis (not data analysis)
 - Interrogator
 - Space sampling (Taguchi search)

User Interface

Inside the FAEHIM Toolbox

Usage Overview

Registry Usage

Parallel Execution

- After completion of workflow:
 - 1. Did the services I use actually fulfil my overall application requirement?
 - 2. Two of the analysis were performed on the same initial data but have different results did I alter the services between these experiments?
 - 3. Did I perform each service on the type of data that the service was intended to analyse, i.e. were the inputs and outputs of each activity compatible?
 - 4. Did I use data sources from the same site?
 - 5. Why did it take much longer to run the analysis in the second instance?

Particularly significant in the context of Distributed Services

- A given element of process documentation referred to as a p-assertion
 - p-assertion: is an assertion that is made by an actor and pertains to a process.
- Types
 - Interaction p-assertion
 - relates to content of received/sent message
 - Actor p-assertion
 - Relationships between actors
 - State of an actor

From: Luc Moreau (U Southampton)

Implementation Diagram

- <u>http://users.cs.cf.ac.uk/Ali.Shaikhali/faehim/</u>
 Standard GPL License
- Video of usage also available at above site
- Launched in 2004
 - eScience Data Mining SIG
 - 550 downloads (since June 2004)
 - http://www.datamininggrid.org/

Provenance Team

- University of Southampton
 - Luc Moreau, Victor Tan, Paul Groth, Simon Miles, Luc Moreau
- IBM Hursley UK (Project Coordinator)
 - John Ibbotson, Neil Hardman, Alexis Biller
- Cardiff University
 - Omer Rana, Arnaud Contes, Vikas Deora
- Universitad Politecnica de Catalunya (UPC)
 - Steven Willmott, Javier Vazquez
- SZTAKI
 - Laszlo Varga, Arpad Andics
- German Aerospace
 - Andreas Schreiber, Guy Kloss, Frank Danneman

http://www.gridprovenance.org/

- Integration of Triana workflow engine with Provenance System
- Access to Provenance Information
 Via an API
 - Via a Portal Interface
- Ability to reconstruct workflow using Provenance information
- Access constraints defined by an administrator

