Statistical Parsing for Text Mining from Scientific Articles

Ted Briscoe

Computer Laboratory University of Cambridge

November 30, 2004

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Contents

1 Text Mining

- 2 Statistical Parsing
- 3 The RASP System
- 4 The FlyBase Project
- 5 The Semantic Web

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

6 Conclusions

└─ Text Mining

└─ The TM Task(s)

Text Mining (TM)

Information Retrieval (IR) Information Extraction (IE) Knowledge Discovery (KD) finding relevant documents finding nuggets of information discovering patterns of information

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

- Text Mining

└─The TM Task(s)

Textual Variation and TM

- 1) The AntP protein represses BicD.
- 1) The AntP protein was found by Fujisaki et al.(1991) to repress BicD.
- 1) BicD is repressed by AntP.
- 1) BicD's repression by AntP is well-known.
- 2) It appears to physically interact with CLARP, a caspase-like molecule.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

└─ Text Mining

└─ The TM Task(s)

IE/KD Subtasks

Noun phrases: Named Entity Classification: Coreference: Relations: Modal Context: Word Senses: (NP the_AT AntP_NN protein_NN1) (NP/gene BiCD) (NP It) = (NP The AntP protein) repress(AntP, BiCD) appear(interact(AntP, CLARP)) drug/protein represses appetite/gene

Statistical Parsing

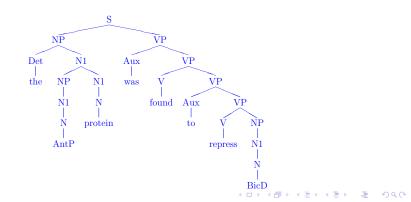
└─ The Parsing Task

Grammatical Relations

The AntP protein was found to repress BicD

(det protein the) (nmod protein AntP) (subj find protein obj) (xcomp find repress) (dobj repress BicD) (subj repress protein) (aux find be)

Dependency Graph (DAG) – close to Pred-Arg / F- Structure


◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Statistical Parsing

└─ The Parsing Task

Phrase Structure Tree

The AntP protein was found to repress BicD

Statistical Parsing

State-of-the-Art

Lexicalised Treebank Parsers

```
(S (NP (NP Pierre Vinken),
(NP (NP 61 years)
(ADJP old)),)
will (VP join
(NP the board)
(PP as
(NP a nonexecutive director))
(ADVP (NP Nov 29))))
```

 10k+ CF rules conditioned on lexical items and structure (500k lexical parameters. = +1%, Gildea, EMNLP01)

- Tree Recovery: approx 90% F-score
- Grammatical Relations: approx 70% F-score

Statistical Parsing

State-of-the-Art

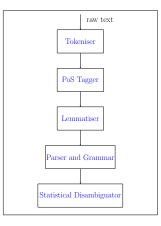
Lexicalised Treebank Parsers

 10k+ CF rules conditioned on lexical items and structure (500k lexical parameters. = +1%, Gildea, EMNLP01)

- Tree Recovery: approx 90% F-score
- Grammatical Relations: approx 70% F-score

Statistical Parsing

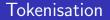
State-of-the-Art


Lexicalised Treebank Parsers

- 10k+ CF rules conditioned on lexical items and structure (500k lexical parameters. = +1%, Gildea, EMNLP01)
- Tree Recovery: approx 90% F-score
- Grammatical Relations: approx 70% F-score

└─ The RASP System

└─System Components


The RASP Pipeline

・ロト・日本・モート モー うへで

└─ The RASP System

└─System Components

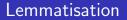
Sentence boundary detection: etc.

- Separation of punctuation: (Fred);
- Deterministic FST (in Flex/C)
- 200k words/sec, errors not evaluated

L The RASP System

System Components

PoS and Punctuation Tagging


- About 150 extended PoS + punctuation tags: NN1
- 1st order HMM using FB algorithm in C (Elworthy, ANLP94)
- thresholded tag 'lattice' (4–10-fold decrease in tag error rate)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

■ 10k words/sec, approx. 0.3% error rate

└─ The RASP System

└─System Components

- 1400 FS rules (Minnen *et al.* JNLE01)
- Deterministic FST (in Flex/C)
- word/tag to lemma+affix/tag run+ing_VVG

200k words/sec, 0.007% error rate

L The RASP System

System Components

Probabilistic Generalised LR Parser

- Manually-created, feature-based generic grammar (1.8K rules)
- Probabilities: shift/reduce conflicts, lookahead item (Briscoe and Carroll CL93)
- Partial-parse recovery computes shortest path in weighted graph-structured stack (Kiefer *et al.* ACL99)
- Parse forest construction is (experimentally) quadratic in sentence length (av. 100 tokens/sec)

└─ The RASP System

Resolution of Ambiguity

Parse Ranking

└─ The RASP System

Resolution of Ambiguity

Ambiguity Resolution

The young man the boats

```
The AT:1
young JJ:0.999544 NN1:0.000456463
man NN1:0.999839 VV0:0.000161307
the AT:1
boats NN2:1
```

```
(|ncsubj| |man:3_VV0| |young:2_NN1| _)
(|dobj| |man:3_VV0| |boat+s:5_NN2| _)
(|det |young:2_NN1| |The:1_AT|)
(|det |boat+s:5_NN2| |the:4_AT|)
```

└─ The RASP System

Resolution of Ambiguity

Ambiguity Resolution

The young man the boats

```
The AT:1
young JJ:0.999544 NN1:0.000456463
man NN1:0.999839 VV0:0.000161307
the AT:1
boats NN2:1
```

```
(|ncsubj| |man:3_VV0| |young:2_NN1| _)
(|dobj| |man:3_VV0| |boat+s:5_NN2| _)
(|det |young:2_NN1| |The:1_AT|)
(|det |boat+s:5_NN2| |the:4_AT|)
```

└─ The RASP System

Resolution of Ambiguity

Weighted Grammatical Relations

Peter reads every paper on markup

1.0 (|ncsubj| |reads:2_VVZ| |Peter:1_NP1| _)
0.7 (|nmod| |on:5_II| |paper:4_NN1| |markup:6_NN|)
0.3 (|nmod| |on:5_II| |reads:2_VVZ| |markup:6_NN|)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

-The RASP System

Evaluation

GR Evaluation Experiment

Maximum	Precision	Recall	F-score
Parses (n)	(%)	(%)	
1	76.25	76.77	76.51
2	80.15	73.30	76.57
5	84.94	67.03	74.93
10	86.73	62.47	72.63
100	89.59	51.45	65.36
1000	90.24	46.08	61.00
unlimited	90.40	45.21	60.27

└─ The FlyBase Project

└─ The Curation Task

A Curated database

- 10 curators download and read papers
- Watch list of 35 journals

Gene proformas (IE templates, 34 fields)
! G1a. Gene symbol to use in database *a :
! G1b. Gene symbol used in paper (if different) *i :
! G4b. Other synonym(s) for gene symbol *i :
! G20b. G1a wildtype expression in wildtype analysed? NSC :
! G18. Gene(s) stated to interact genetically with G1a *p :

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Automated integration of proformas with the database

└─ The FlyBase Project

└─ The Curation Task

A Curated database

- 10 curators download and read papers
- Watch list of 35 journals
- Gene proformas (IE templates, 34 fields)
 - ! G1a. Gene symbol to use in database *a :
 - ! G1b. Gene symbol used in paper (if different) *i :
 - ! G4b. Other synonym(s) for gene symbol *i :
 - ! G20b. G1a wildtype expression in wildtype analysed? NSC :

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

! G18. Gene(s) stated to interact genetically with G1a $\ensuremath{^{\circ}\text{p}}$:

• • •

Automated integration of proformas with the database

└─ The FlyBase Project

└─ The Curation Task

A Curated database

- 10 curators download and read papers
- Watch list of 35 journals
- Gene proformas (IE templates, 34 fields)
 - ! G1a. Gene symbol to use in database *a :
 - ! G1b. Gene symbol used in paper (if different) *i :
 - ! G4b. Other synonym(s) for gene symbol *i :
 - ! G20b. G1a wildtype expression in wildtype analysed? NSC :
 - ! G18. Gene(s) stated to interact genetically with G1a *p :

. . .

Automated integration of proformas with the database

└─ The FlyBase Project

L Tuning RASP to the Domain

Analysis of Curated Papers Archive

1 5k+ articles in PDF or XML format

2 PDF \rightarrow XML, mark-up of sections, etc

3 Parse document with RASP

4 Link text passages to gene proformas

5 Interactive construction of proformas

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

└─ The FlyBase Project

L Tuning RASP to the Domain

Analysis of Curated Papers Archive

1 5k+ articles in PDF or XML format

- **2** PDF \rightarrow XML, mark-up of sections, etc
- 3 Parse document with RASP
- 4 Link text passages to gene proformas
- 5 Interactive construction of proformas

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

└─ The FlyBase Project

L Tuning RASP to the Domain

Analysis of Curated Papers Archive

1 5k+ articles in PDF or XML format

2 PDF \rightarrow XML, mark-up of sections, etc

3 Parse document with RASP

- 4 Link text passages to gene proformas
- 5 Interactive construction of proformas

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

└─ The FlyBase Project

L Tuning RASP to the Domain

Analysis of Curated Papers Archive

- 5k+ articles in PDF or XML format
- **2** PDF \rightarrow XML, mark-up of sections, etc
- 3 Parse document with RASP
- 4 Link text passages to gene proformas
- 5 Interactive construction of proformas

└─ The FlyBase Project

L Tuning RASP to the Domain

Analysis of Curated Papers Archive

- 5k+ articles in PDF or XML format
- **2** PDF \rightarrow XML, mark-up of sections, etc
- 3 Parse document with RASP
- 4 Link text passages to gene proformas
- 5 Interactive construction of proformas

└─ The FlyBase Project

L Tuning RASP to the Domain

FlyBase as a Dictionary

- 18k Genes, 75k Gene names / acronyms
- Overlap with general English: AN, BUT, CAN, MAD, spliced

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Spelling variation: FAS-III, fas III
- Synonymy (2+ terms / 1 gene): PHM, dPHM
- Homonymy (1 term / 2+ entities): iab

- The FlyBase Project

└─ Tuning RASP to the Domain

Integrating Named Entity Recognition with RASP

The interleukin-2 (IL-2) promoter ...

(det promoter The)
 (nmod brack IL-2 promoter)
 (nmod _ Interleukin-2 promoter)

The c-rel and v-rel (proto) oncogenes ...

```
a)
(det oncogene+s The)
(nmod brack proto oncogene+s)
(nmod _ c-rel oncogene+s)
(ncmod _ v-rel oncogene+s)
(conj and c-rel v-rel)
```

```
b)
(det oncogene+s The)
(nmod brack proto oncogene+s)
(det c-rel The)
(nmod _ v-rel oncogene+s)
(conj and c-rel oncogene+s)
```

- The FlyBase Project

└─ Tuning RASP to the Domain

Integrating Named Entity Recognition with RASP

- The interleukin-2 (IL-2) promoter ...
- (det promoter The)
 (nmod brack IL-2 promoter)
 (nmod _ Interleukin-2 promoter)
- The c-rel and v-rel (proto) oncogenes ...

```
a)
(det oncogene+s The)
(nmod brack proto oncogene+s)
(nmod _ c-rel oncogene+s)
(ncmod _ v-rel oncogene+s)
(conj and c-rel v-rel)
```

```
b)
(det oncogene+s The)
(nmod brack proto oncogene+s)
(det c-rel The)
(nmod _ v-rel oncogene+s)
(conj and c-rel oncogene+s)
```

└─ The FlyBase Project

└─ Tuning RASP to the Domain

Integrating Named Entity Recognition with RASP

- The interleukin-2 (IL-2) promoter ...
- (det promoter The)
 (nmod brack IL-2 promoter)
 (nmod _ Interleukin-2 promoter)
- The c-rel and v-rel (proto) oncogenes ...

```
a) b)

(det oncogene+s The) (det

(nmod brack proto oncogene+s) (nmod

(nmod _ c-rel oncogene+s) (det

(ncmod _ v-rel oncogene+s) (nmod

(conj and c-rel v-rel) (conj
```

```
b)
(det oncogene+s The)
(nmod brack proto oncogene+s)
(det c-rel The)
(nmod _ v-rel oncogene+s)
(conj and c-rel oncogene+s)
```

└─ The FlyBase Project

L Tuning RASP to the Domain

Domain Predicate Resolution

1 Parse papers archive with generic RASP system

2 Statistically induce words' properties from parse contexts

■ (S AntP represses_Vtrans BicD) ~> repress(protein, gene)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\blacksquare \rightsquigarrow$ The represssion of BicD by AntP

└─ The FlyBase Project

L Tuning RASP to the Domain

Domain Predicate Resolution

- 1 Parse papers archive with generic RASP system
- 2 Statistically induce words' properties from parse contexts

■ (S AntP represses_Vtrans BicD) ~> repress(protein, gene)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\blacksquare \rightsquigarrow$ The represssion of BicD by AntP

└─ The FlyBase Project

L Tuning RASP to the Domain

Domain Predicate Resolution

- 1 Parse papers archive with generic RASP system
- 2 Statistically induce words' properties from parse contexts

■ (S AntP represses_Vtrans BicD) ~> repress(protein, gene)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\blacksquare \rightsquigarrow$ The represssion of BicD by AntP

└─ The FlyBase Project

L Tuning RASP to the Domain

Domain Predicate Resolution

- 1 Parse papers archive with generic RASP system
- 2 Statistically induce words' properties from parse contexts

■ (S AntP represses_Vtrans BicD) ~> repress(protein, gene)

 $\blacksquare \rightsquigarrow$ The repression of BicD by AntP

└─ The FlyBase Project

From RASP to TM

TM: IE

- I GRs support recovery of information nuggets: Sⁿ:(subj repress protein _) ∧ (dobj repress BicD _)
- in modal contexts: Sⁿ⁺¹:(xcomp to find repress)
- 3 and anaphora resolution: Sⁿ⁺¹:(subj appear it) → Sⁿ:(subj find protein obj)

└─ The FlyBase Project

From RASP to TM

TM: IE

- I GRs support recovery of information nuggets: Sⁿ:(subj repress protein _) ∧ (dobj repress BicD _)
- in modal contexts: Sⁿ⁺¹:(xcomp to find repress)
- 3 and anaphora resolution: Sⁿ⁺¹:(subj appear it) → Sⁿ:(subj find protein obj)

└─ The FlyBase Project

From RASP to TM

TM: IE

- I GRs support recovery of information nuggets: Sⁿ:(subj repress protein _) ∧ (dobj repress BicD _)
- in modal contexts: Sⁿ⁺¹:(xcomp to find repress)
- 3 and anaphora resolution: Sⁿ⁺¹:(subj appear it) → Sⁿ:(subj find protein obj)

└─ The FlyBase Project

From RASP to TM

TM: IR/KD: Passage Retrieval and Classification

- More precise queries: *AntP*, *BicD*, *repress*, ... ~> repress(AntP, BicD)
- Gene expression passages: *AntP*, *BicD*, *express*, ... ~ express(gene, protein)

└─ The FlyBase Project

From RASP to TM

TM: IR/KD: Passage Retrieval and Classification

- More precise queries: *AntP*, *BicD*, *repress*, ... ~> repress(AntP, BicD)
- Gene expression passages: AntP, BicD, express, ... ~ express(gene, protein)

└─ The Semantic Web

- Domain Resources: migration to XML ~→ RDF, OWL Lite e.g. Gene Sequence Ontology
- IE Customisation Standards: Lexicon and Ontology APIs, etc
- IE as Layered Annotation: XML (standoff) pipeline ~> document metadata (RDF)
- RDF Metadata: semantic search and flexible integration with developing domain resources still indexed to text (passages)
- RDF-based Curation: gene proforma + provenance, textual evidence, links to ontologies, database and other literature
- SW Systems: MnM, KIM, etc: integrating GATE (IE as XML annot.), Sesame (RDF repository), and Lucene (IR engine)

└─ The Semantic Web

- Domain Resources: migration to XML ~→ RDF, OWL Lite e.g. Gene Sequence Ontology
- IE Customisation Standards: Lexicon and Ontology APIs, etc
- IE as Layered Annotation: XML (standoff) pipeline ~> document metadata (RDF)
- RDF Metadata: semantic search and flexible integration with developing domain resources still indexed to text (passages)
- RDF-based Curation: gene proforma + provenance, textual evidence, links to ontologies, database and other literature
- SW Systems: MnM, KIM, etc: integrating GATE (IE as XML annot.), Sesame (RDF repository), and Lucene (IR engine)

└─ The Semantic Web

- Domain Resources: migration to XML ~→ RDF, OWL Lite e.g. Gene Sequence Ontology
- IE Customisation Standards: Lexicon and Ontology APIs, etc
- IE as Layered Annotation: XML (standoff) pipeline ~> document metadata (RDF)
- RDF Metadata: semantic search and flexible integration with developing domain resources still indexed to text (passages)
- RDF-based Curation: gene proforma + provenance, textual evidence, links to ontologies, database and other literature
- SW Systems: MnM, KIM, etc: integrating GATE (IE as XML annot.), Sesame (RDF repository), and Lucene (IR engine)

└─ The Semantic Web

- Domain Resources: migration to XML ~>> RDF, OWL Lite e.g. Gene Sequence Ontology
- IE Customisation Standards: Lexicon and Ontology APIs, etc
- IE as Layered Annotation: XML (standoff) pipeline ~> document metadata (RDF)
- RDF Metadata: semantic search and flexible integration with developing domain resources still indexed to text (passages)
- RDF-based Curation: gene proforma + provenance, textual evidence, links to ontologies, database and other literature
- SW Systems: MnM, KIM, etc: integrating GATE (IE as XML annot.), Sesame (RDF repository), and Lucene (IR engine)

└─ The Semantic Web

- Domain Resources: migration to XML ~>> RDF, OWL Lite e.g. Gene Sequence Ontology
- IE Customisation Standards: Lexicon and Ontology APIs, etc
- IE as Layered Annotation: XML (standoff) pipeline ~> document metadata (RDF)
- RDF Metadata: semantic search and flexible integration with developing domain resources still indexed to text (passages)
- RDF-based Curation: gene proforma + provenance, textual evidence, links to ontologies, database and other literature
- SW Systems: MnM, KIM, etc: integrating GATE (IE as XML annot.), Sesame (RDF repository), and Lucene (IR engine)

└─ The Semantic Web

- Domain Resources: migration to XML ~>> RDF, OWL Lite e.g. Gene Sequence Ontology
- IE Customisation Standards: Lexicon and Ontology APIs, etc
- IE as Layered Annotation: XML (standoff) pipeline ~> document metadata (RDF)
- RDF Metadata: semantic search and flexible integration with developing domain resources still indexed to text (passages)
- RDF-based Curation: gene proforma + provenance, textual evidence, links to ontologies, database and other literature
- SW Systems: MnM, KIM, etc: integrating GATE (IE as XML annot.), Sesame (RDF repository), and Lucene (IR engine)

Conclusions

Conclusions

• TM = IR + IE + KD in SW

- TM expensive to develop, apart from IR
- Adaptive IE deeper statistical analysis, more generic rules, (weakly-supervised) domain customisation
- Semantic Web infrastructure for standardising domain customisation using extant domain resources
- Web Services e.g. TM as a component of microarray data interpretation

Conclusions

Conclusions

• TM = IR + IE + KD in SW

TM expensive to develop, apart from IR

- Adaptive IE deeper statistical analysis, more generic rules, (weakly-supervised) domain customisation
- Semantic Web infrastructure for standardising domain customisation using extant domain resources
- Web Services e.g. TM as a component of microarray data interpretation

Conclusions

Conclusions

• TM = IR + IE + KD in SW

TM expensive to develop, apart from IR

 Adaptive IE deeper statistical analysis, more generic rules, (weakly-supervised) domain customisation

- Semantic Web infrastructure for standardising domain customisation using extant domain resources
- Web Services e.g. TM as a component of microarray data interpretation

Conclusions

Conclusions

• TM = IR + IE + KD in SW

TM expensive to develop, apart from IR

- Adaptive IE deeper statistical analysis, more generic rules, (weakly-supervised) domain customisation
- Semantic Web infrastructure for standardising domain customisation using extant domain resources
- Web Services e.g. TM as a component of microarray data interpretation

Conclusions

Conclusions

• TM = IR + IE + KD in SW

TM expensive to develop, apart from IR

- Adaptive IE deeper statistical analysis, more generic rules, (weakly-supervised) domain customisation
- Semantic Web infrastructure for standardising domain customisation using extant domain resources
- Web Services e.g. TM as a component of microarray data interpretation