National Centre for Text Mining NaCTeM

e-science and data mining workshop

John Keane Co-Director, NaCTeM

john.keane@manchester.ac.uk School of Informatics, University of Manchester

What is text mining?

- Text mining attempts to discover new, previously unknown information by applying techniques from data mining, information retrieval, and natural language processing:
 - To identify and gather relevant textual sources
 - To analyse these to extract facts involving key entities and their properties
 - To combine the extracted facts to form new facts or to gain valuable insights.

Why text mining?

- Users overwhelmed by amount of text; 80% of information in textual form
 - Results of scientific experiments also reproduced in textual form
 - Critical information missed
 - Only 12% of TOXLINE users find what they want
 - Lost in irrelevant documents

Why text mining? (cont.)

- Biological information
 - Disseminated over huge amount of documents
 - Dynamic (e.g. discovery of new genes)
 - Databases and controlled vocabularies encode only fraction of information and interactions
 - Significant error rate in manually curated DBs
 - No agreement on naming (inconsistent terminology)
 - \$800M for 12 years for discovery of new drug
 - Reduced to 10 years if all relevant information known

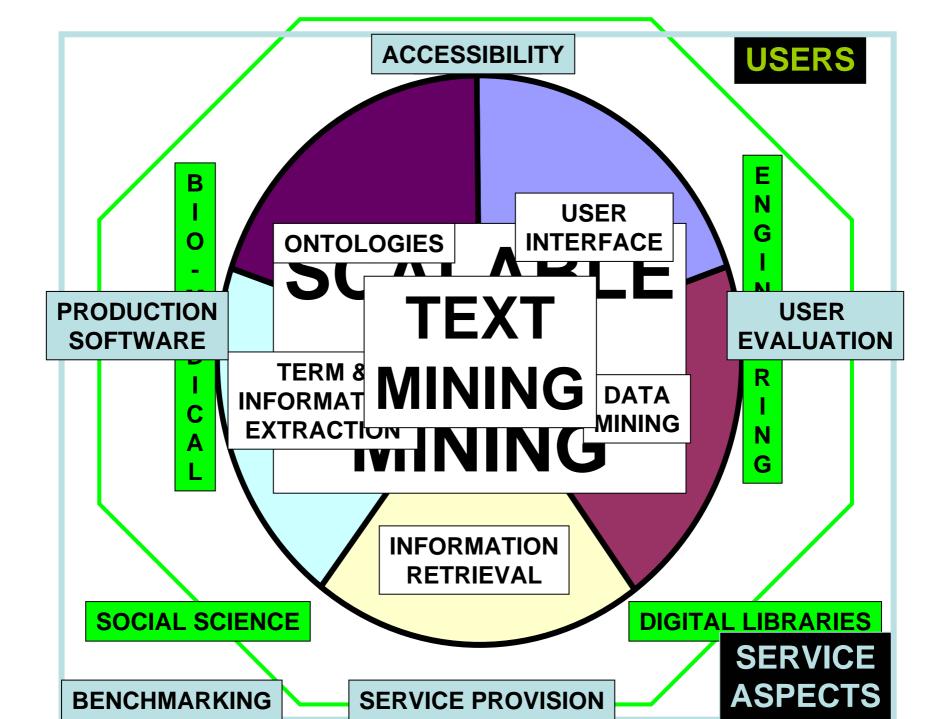
Problem and Purpose

Main problems?

- Growing number and size of documents
- Language variability and ambiguity
- Difficult to assimilate/locate new knowledge without automated help

Main purposes of TM?

- Make information buried in text accessible
- Integrate information across articles
- Help interpret experimental data
- Update databases (semi)automatically


A simple motivating example

 Blagosklonny & Pardee argued information necessary to understand some processes related to p53 gene implicitly available for 10 years in the literature before finally clarified

Blagosklonny, M., Pardee, A., 2001: *Conceptual Biology: Unearthing the Gems*, Nature 416: 373.

A vision for the future

- DBs with accurate, valid, exhaustive, rapidly updated data
- Drug discovery costs slashed; animal experimentation reduced through early identification of unpromising paths
- New insights gained through integration and exploitation of experimental results, DBs, and scientific knowledge
- Product development archives and patents yield new directions for R&D
- Searching yields *facts* rather than documents to read

Text mining tasks and resources

- Information retrieval
 - Gather, select, filter, documents that may prove useful
 - Find what is known
- Information extraction
 - Partial, shallow language analysis
 - Find relevant entities, facts about entities
 - Find only what looking for
- Mining
 - Combine, link facts
 - Discover new knowledge, find new facts
- Resources:
 - ontologies, lexicons, terminologies, grammars, annotated corpora (machine learning, evaluation)

National Centre for Text Mining

- First such centre in the world
- Funding: JISC, BBSRC, EPSRC
 - £1M over 3 years
- Consortium investment
 - >800K including new chair in TM
- Location:
 - Manchester Interdisciplinary Biocentre (MIB)
- Focus: Bio, then extend to other domains
- To move towards self-sustainability
 - Extend services to industry

Consortium

- Manchester, Liverpool, Salford
- Service activity run by MIMAS (National Centre for Dataset Services), within MC (Manchester Computing)
- Self-funded partners
 - San Diego Supercomputing Center
 - UCalifornia, Berkeley
 - UGeneva
 - UTokyo
- Strong industrial & academic support
 - Astrazeneca, Xerox, EBI, Wellcome Trust, Sanger Institute, IBM, Unilever, ELRA, NowGEN, bionow

Competence within the consortium

- Manchester: TM (IE); standards; bioinformatics; parallel & distributed DM, HPC; HCI; ontologies & standards for semantic web; e-Science and GRID; curation of biodatabases
- Salford: Bio-TM; terminology; visualisation
- Liverpool: digital archives & IR; bioinformatics
- Manchester Computing: service provision; national data services (MIMAS); Supercomputing (HPC CSAR)

Self-funded Partners

- San Diego Supercomputing Centre: SKIDL toolkit for DM of high dimensional datasets; distributed and parallel computing
- SIMS, UCalifornia, Berkeley: probabilistic semantic grammar TM
- UTokyo: Bio TM; IE, GENIA, ontologies
- ISSCO, UGeneva: Standards-based evaluation methodologies for TM tools

Services

- Establish a high quality service provision for the UK academic community
 - Identify the 'best of breed' TM tools;
- Types of services
 - Facilitate access to TM tools, resources & support
 - Offer on-line use of resources and tools (also to guide and instruct)
 - Offer one-stop shop for complete, end-to-end processing

Critical aspects of service provision

 Scalability: most critical aspect of TM tool usage for a national service
 Consortium strong in distributed, high

performance, GRID activity

- Focus on user-need related development whilst using experts to feed-in research results
 - need to separate research from TM service provision

Core development

- Creation of an infrastructure for TM
 - Standards based infrastructure for components and datasets to allow efficient distributed computing
 - Portal access
- Support for information retrieval
 - Use of a digital library system (Cheshire) to harvest and index data with improved index term weighting
 - Combine SKIDL (data mining toolkit, SDSC) with latent semantic analysis and probabilistic retrieval to extract text fragments for IE

Core development

- Support for inter-component communication, term management and IE
 - Produce a common annotation scheme to support UK TM, further developed from EU project http://www.crim.co.umist.ac.uk/parmenides/
 - Collaboration ISO TC37/SC4
- Term management
 - ATRACT workbench (Lion BioScience / EBI)
- Information Extraction
 - Manchester CAFETIERE

Core development

- Support for data grid technologies
 - Provide a means to connect to heterogeneous resources
- User interfaces, scientific data integration and mediation
 - Support user to set up data mining scenarios (via wizards)
- Support for advanced visualisation

Exemplary Outcomes

- Specific collaboration with EBI/SIB Swiss-Prot
 - Semi-auto produce highly precise terminology
 - Demonstrate precision of facts and associations mined from text that can be linked to terminology.
- Curation facilitation via text mining
 - Enhances access to, and retrieval of, literature
 - Keep DB links current/consistent with literature
 - Extracts pertinent facts from literature
 EBI tests suggest ~10% improvement over manual
 - Evident link with work of Digital Curation Centre
- Improve/construct/validate ontologies
- Evaluation for users/performance evaluation
- Component standardisation/ API/infrastructure/Common Annotation Scheme

Conclusion

- Creation of NaCTeM responds to a widely-felt need for text mining to support research
- Critical to engage with
 - Users in academia and (eventually) industry
 - Providers of bioinformatics infrastructure and resources such as biodatabases
- TM can be used also in teaching & learning
 - Problem-based learning
 - CAL support (extraction of facts and examples)
 - Exploration of link between student experimental results and results reported in literature

Background reading

Introductory

- http://www.sims.berkeley.edu/~hearst/text-mining.html
- BioLink SIG (workshop at ISMB 04 in Glasgow) http://www.pdg.cnb.uam.es/BioLink/
- **BIONLP.org**
- http://www.ccs.neu.edu/home/futrelle/bionlp/
- Tutorials
- http://www.ccs.neu.edu/home/futrelle/bionlp/
- psb2001tutorials.html
- http://www.3rdmill.com/pdf/MassBioTech%20BrfgPDF.pdf

Appendix: Types of services

- Access to TM tools developed from leading research
- Access to a selection of commercial text mining tools
- Access to ontology libraries
- Access to large and varied data sources
- Access to a library of data filtering tools
- On-line tutorials, briefings and white papers
- On-line advice to match specific requirements to TM solutions
- On-line TM & packaging of results involving GRID-based flexible composition of tools, resources and data by users
- TM tool trials and evaluations
- Collaborative development / enhancement of TM tools, annotated corpora and ontologies