Review of Questionnaires

E-Science needs and E-Science provision

The Questionnaire

- Issues
 - Project drivers
 - Data mining drivers and importance
 - Data mining methods
 - Data types, sizes and format
 - Software and Platform

10 Responses

- Half were users (scientists requiring a software fix)
- Half were suppliers (people aiming to provide a number of e-science software concoctions)
- International ring of core production and distribution units (Grid/Web service provision, software platforms, etc).

Why?

- This is all about E-Science right?
- What E do scientists actually need.
- We need to make sure that the developments made are driven by real markets.
- Two possible serious risks:
 - Have user requirements which are not matched by technology.
 - Have a large technology infrastructure which does not match users simpler or specific requirements

Overview

- Summarised and collated results. Care needed.
- A variety of highly specific and uniquely enlightening entries
- For example my final summary for one case was, for each category:
- Various, Various, Various, Various, Various, Various, Distributed... Sometimes, In house... + IDL + MATLAB +... Various, Various
- So there you go.

What can we really say

- Pinch of salt small sample size BUT
- Difference between the providers and the users.
- Some big projects out there with large data sizes (>50GB), but many projects are small or medium in data size.
- Data integration a recurring theme
- In most cases we are talking about standard data mining tools.
- A lot of in-house software development.

Project Size

- Astronomical, Particle Physics, Engineering biggies, but some of these are easily segmentable.
- Medium sized Bioinformatics, social science.
- Small specific scientific questions. Dealing with intricate questions. Maybe web services to help provide data and tools access.

What is the point?

- Usually users have fairly well defined ideas about what they want.
- Problem solving combined with ease of provision.
- Some computational hindrance: would like to run on more data, but not achievable.
- Distributed data is an issue federation versus collation.

Methods

- Standard Stuff:
 - Decision trees
 - Association rules
 - Neural Networks
 - K nearest neighbours
 - Clustering
 - Case based reasoning
- Selection Bias

Data Mining Drivers

- Data Integration is a very common issue
 - Integration of different types of sources
 - Integrating sources from different locations
 - Data linkage relationship discovery
- Helping with scientific inference
- Discovery of diagnostics

Type format location

- All sorts.
- Text, numeric, time series, hierarchical.
- XML, flat file, relational databases. Various.
- Often distributed.
- Some standalone. Grid services, Web services. Cluster approaches.

Software

- Lots of in-house
 - University bias software development part of project deliverables.
 - Even so, suggests room for development.
- Other mentions: MATLAB, IDL, Weka, C5, Java, various open source.

Providers

- Standard data mining methods
 - Parallelisation
 - Griddification
 - Algorithm Integration
 - General
 - Not much mention of particular users or their requirements.
 - All singing, all dancing.
 - Computational rather than scientific drivers.

Summary

- Lots of people doing different things
- Users have very specific requirements
 - Can we provide generic tools to cover them, or do we need to engage with specialisms
- Size not the big issue.
- Data integration, accessibility of data and methods, dealing with distributed data are.
- Variety of work providing standard data mining tools in a more parallel or griddy way.
- Plenty of room for discussion.