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1 Equations of Stellar Structure

The task of stellar astrophysics is to explain the systematic properties that we have discussed in
the ‘Observational Astronomy’ section. A star is characterised by its mass M , radius R, luminosity
L, and temperature T . We’ll also see that its composition or metallicity Z also matters (‘metals’
are anything other than H & He: the Sun has about 2% of its mass in metals and 25% in He).
Some of these quantities are related. For instance, since a star shines like a black body:

L = 4πR2 σ T 4
surface, (1)

where σ = 5.67 × 10−8 Wm−2K−4 is the Stefan-Boltzmann constant. The mass and radius are
related through the average density ρ̄:

M = 4πR3ρ̄/3. (2)

More generally, if ρ(r) denotes the local density of the star at a radius r from its centre, then the
mass ∆M of the star in a shell of thickness ∆r is ∆M = 4πr2ρ(r)∆r, or

dM(r)

dr
= 4πr2ρ(r) (3)

This is the first equation of stellar structure (mass conservation, or the equation of conti-
nuity). M(r) means the mass interior to radius r.

Now, the local density ρ(r) and temperature T (r) are also related. For a star on the main sequence,
its hot interior behaves like an ideal gas:

P (r) = n(r) kT (r) ⇒ P (r) = [ρ(r)/m̄] kT (r), (4)
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where n(r) is the number density of all particles (electrons plus nuclei, since the material in the Sun
is ionized). The mass m̄ is the mean mass per particle: n(r) = ρ(r)/m̄. We shall generally assume
m̄ = mp/2: most of the Sun is Hydrogen plasma, and each electron-proton pair weighs basically
just the proton mass – or mp/2 on average.

The internal pressure of the star varies with radius, and this pressure gradient supports the star
against its own gravity. Consider a parcel of gas of mass m inside the star, with area A and radial
extent ∆R: The pressure force acting on the bottom is Fbottom = P (r)A; on the top, it is

Ftop = P (r +∆r)A ≃ P (r)A+
dP

dr
∆r A. (5)

The net pressure force acting is thus

Fbottom − Ftop = P (r)A−

[

P (r)A+
dP

dr
∆r A

]

= −
dP

dr
∆r A. (6)

In hydrostatic equilibrium, this net pressure force must balance gravity.

The gravitational acceleration at r produced by the star is

g =
GM(r)

r2
(radially inwards), (7)

and the gravitational force acting on the parcel of gas (of mass m) is F = mg. In order to balance
the net pressure force, we must have

−
dP

dr
∆r A = m

GM(r)

r2
, (8)

and dividing by m gives the equation of hydrostatic equilibrium:

−
1

ρ

dP

dr
=

GM(r)

r2
(9)

(using ρ(r) = m/(∆r A), because ∆r A is the volume of the gas parcel).

This equation can tell us about conditions in the invisible stellar interior. As an example, we can
estimate the pressure at the centre of the Sun, PC . As a rough approximation, we can assume a
typical pressure gradient dP/dr ≃ PC/R (i.e. the surface pressure is negligibly small). Hydrostatic
equilibrium relates this typical gradient to a typical density and a typical acceleration. We take
the former to be the mean density, ρ̄, and the latter to be the surface acceleration, GM/R2. This
gives

PC ≃ GMρ̄/R = 3GM2/4πR4. (10)

A more careful argument shows that this is an inequality. If we divide the equation of hydrostatic
equilibrium by the equation of mass conservation, we get

−
dP/dr

dM/dr
= −

dP

dM
=

GM(r)

4πr4
>

GM(r)

4πR4
(11)

Integrating dM from 0 to M then gives
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PC > GM2/8πR4, (12)

which is almost the previous result. This pressure is 4.5 × 1013Nm−2, or 108.6 times atmospheric
pressure.

What is the corresponding temperature? We assume the perfect gas law,

P = ρkT/m̄, (13)

so the central temperature is

TC = m̄PC/kρC . (14)

If we assume that the central density is of order the mean density, this suggests a minimum
temperature of

kTC ∼
> Gm̄M

R
≃ 1.2× 107 K. (15)

(taking m̄ = mp/2, and discarding factors of order unity). In other words, the typical thermal
energy is of order the gravitational binding energy. This approximate equality between kinetic
and potential energies is very common in self-gravitating structures, and is known as the virial
theorem. This temperature has been deduced using some rather dubious assumptions, but the
final figure for the temperature is not so far wrong: the correct central temperature for the Sun is
1.6× 107 K.

Now, we would like to get an equation for L(r): the luminosity passing through each layer r in the
star. [L(R) is the luminosity emanating from the stellar surface, which is the star’s luminosity]. To
do this, we must consider the source of a star’s energy.

2 Energy Generation in stars

The Sun loses energy at the rate L⊙ = 3.8× 1026 W. How long would it take the Sun to use up all
of its thermal energy? If each particle in the Sun carries a thermal energy 3kT/2 on average (by
equipartition of energy), then we have for the total thermal energy of these particles

Uthermal ≃ (M⊙/m̄)× 3kT/2 ≃ (M⊙/m̄)×
3GM⊙m̄

2R⊙

=
3GM2

⊙

2R⊙

≃ 6× 1041 J. (16)

How long does it take the Sun to radiate away all this thermal energy?

tthermal =
Uthermal

L⊙

=
6× 1041 J

3.8× 1026W
≃ 1.6× 1015 s ≃ 50Myr. (17)

This is much less than the age of the Earth, which is 4.56 Gyr. This was a fundamental problem
recognised already by the end of the 19th century by Kelvin & Helmholtz (sometimes tthermal is
called the Kelvin-Helmholtz time). It tells us that the Sun must have some additional energy-
generating mechanism. One of the great achievements of 20th Century physics was to work out
what powers the stars. It just comes down to E = mc2.

As soon as nuclear reactions were discovered in the early 20th Century, it was clear that they were
a much greater potential source of energy than any chemical reaction, and were thus a plausible
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source of energy for a star. Consider fusing 4 protons (from the ionised hydrogen in the star) into
a helium nucleus:

4p →
4He + Energy Qeff (18)

(Note that 4He consists of 2 protons and 2 neutrons, so 2 of the protons would need to convert
into neutrons plus positrons in this process.) Now, the measured mass of 4He is less than the total
mass of the individual 4 protons (this is true even though the mass of a neutron is slightly more
than the mass of a proton).

We know then that some mass ∆m was lost, corresponding to an energy Qeff = ∆mc2. Energy must
be conserved in the fusion process, so this much energy is carried away by radiation: that’s what
Qeff represents. Physically, there is a small but negative binding energy holding the 2 protons
and 2 neutrons together in the 4He nucleus. This binding energy represents the amount of energy
needed to cause the nucleus to undergo fission into its component parts. Quantitatively, we find
∆m ≃ 0.007m(4He), so that nearly 1% of the mass of the protons is converted into energy.

Figure 1: As we move to heavier nuclei, the inter-nuclear forces cause them to be more strongly
bound. The best way of quantifying the relative strengths of these bonds is via the binding energy
per nucleon (as measured by the mass of the nucleus compared to its component parts). In this
plot (showing the most abundant isotopes of each element), two things stand out: (1) the relatively
strong binding of 4He; (2) the maximum at Fe (Z = 26, A = 56), which is the most stable element.

This is all very well, but fusion reactions will only happen if the protons can approach within the
range of the strong nuclear interaction (about 10−15 m). The protons are electrically charged and
repel each other, so it is not clear whether fusion will happen in practice.

2.1 Classical view vs quantum tunneling

Start with a classical argument (which will turn out to be wrong). Two protons at large separation
have a total energy that is roughly their kinetic energy, Etot ≃ EK , because their Coulomb energy
decays with separation: EC = e2/4πǫ0r. To fuse, they must be brought together into the very small
space of a nucleus: rN ≃ 10−15 m.
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If they were initially given just enough kinetic energy that the Coulomb repulsion brings them
exactly to rest as they reach a separation rN , then their final total energy will just be electrostatic
potential energy. Conservation of energy then says

Einit
tot = Efinal

tot ⇒ Einit
K = Efinal

C =
e2

4πǫ0rN
≃ 2× 10−13 J. (19)

If the protons have a temperature T , then the mean kinetic energy of two protons will be EK =
2× (3kT/2), and the required temperature will be

T =
EC

3k
≃ 1010K. (20)

However, this is much hotter than the Sun’s centre. This was a major stumbling block to advocates
of nuclear fusion as the energy source in stars. Still, some weren’t dissuaded, like Sir Arthur
Eddington who said it must somehow work at the Sun’s temperature, ‘. . . we tell him [the critic]
to go and find a hotter place!’. The answer was recognised by George Gamow, and lies in the
intrinsically non-classical phenomenon known as quantum tunneling. Essentially, there is a finite
probability for protons to fuse at any given energy E, which is proportional to e−(EG/E)1/2 . This
is called penetration factor, and the energy EG is called Gamow energy. This roughly means
that particles with energies EG and above should easily be able to tunnel through the Coulomb
barrier and fuse.

The Gamow energy EG is given by

EG = (παZAZB)
2 2mrc

2 (21)

where ZA and ZB are the charges of two fusing particles A and B, mr = mAmB/(mA +mB) is the
reduced mass, and α ≡ e2/(4πǫ0h̄c) ≃ 1/137. Note that the Gamow energy is nearly two orders
of magnitude higher for the fusion of a proton with a carbon nucleus than for the fusion of two
protons.

2.2 Nuclear fusion

In order to determine the nuclear fusion rate, RAB, we need to think about the available number of
particles at a given energy. In thermal equilibrium the particle energies are distributed according
to the Boltzmann factor,

PBoltz ∝ exp(−E/kT ), (22)

where T is the temperature of the gas. So, the total probability for particles to fuse depends on
particle energies according to

RAB ∝ Ptot = PBoltz × Ptunnel ≈ exp
[

−E/kT − (EG/E)1/2
]

(23)

This rate peaks at about E = E0 = (kT )2/3E
1/3
G /22/3. For the fusion of two protons, EG = 493 keV,

whereas in the Sun’s core (T = 1.6× 107 K) kT = 1.4 keV, so that E0 ≃ 6.2 keV ≃ 4.4kT . Notice
that this automatically gives a strong temperature dependence of the reaction rate: fusion in the
Sun involves protons that are on the rare exponential tail of the probability distribution, so that a
small change in temperature causes a large change in the reaction rate.
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Figure 2: The probability that a proton of energy E in the Sun will be able to fuse scales as the
Boltzmann thermal probability distribution (dashed) times the tunneling probability (dot-dashed).
The product (solid line) peaks in the Sun at about 6 keV, or 4 times the typical thermal energy.

3 Nuclear Reactions

Nuclear reactions fusing 4p →
4He occur by two principal mechanisms: (1) The PP chain; (2) The

CNO Cycle.

3.1 PP chain (for stars with M < M⊙)

The dominant reaction branch gives deuterium initially (2H), which then combines with a third
proton to produce 3He:

p+ p → d+ e+ + νe

p+ d →
3He + γ (24)

There are then three possible continuations for the 3He:

Branch 1 : 3He + 3He →
4He + 2p

Branch 2 : 3He + 4He →
7Be + γ

e− + 7Be →
7Li + νe

p+ 7Li →
4He + 4He

Branch 3 : 3He + 4He →
7Be + γ

p+ 7Be →
8B+ γ

8B →
8Be∗ + e+ + νe

8Be∗ →
4He + 4He (25)
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In each case the sum total gives

4p →
4He +Qeff + 2e+ + 2νe, (26)

where Qeff includes the energy lost directly as photons and by the annihilation of 2e+ with ambient
electrons in the plasma; it does not include the energy carried away as neutrinos. According to
the standard model, Branch 1 occurs about 85% of the time in the sun, and has Qeff = 26.2MeV,
Branch 2 occurs about 15% of time, with Qeff = 25.2MeV, and Branch 3 occurs about 0.02% of
the time, with Qeff = 19.1MeV.

For T close to 107 K, the energy generation rate per unit mass, ǫ, is given approximately by

ǫpp ≃ 1.07× 10−8ρX2T 4
7 Wkg−1, (27)

where X is the mass fraction in H and T7 ≡ T/107 K.

3.2 CNO Cycle (M > M⊙)

This is a more complex chain of nuclear reactions involving proton capture and decay:

p+ 12C →
13N+ γ

13N →
13C+ e+ + νe

p+ 13C →
14N+ γ

p+ 14N →
15O+ γ

15O →
15N+ e+ + νe

p+ 15N →
12C+ 4He (28)

The original 12C nucleus has gone back into circulation by the end, resulting in the cycle – it
therefore acts as a catalyst for the nuclear generation of Helium. As for the pp chain, the net result
is

4p →
4He +Qeff , (29)

where now Qeff = 23.8 MeV (the neutrinos would increase this by 6%). For T close to 107 K, the
energy generation rate is approximately given by

ǫCNO ≃ 6.54× 10−11ρXXCNOT
20
7 Wkg−1, (30)

where XCNO is the total mass fraction in C, N and O. The stronger temperature dependence of the
CNO cycle arises because of the much higher Coulomb barriers in the fusion reactions.

Because of their different temperature dependences, the pp chain is the dominant energy generation
mechanism in low mass (cooler) stars, while the CNO cycle dominates in more massive (hotter)
stars. About 98–99% of the energy production in the sun is through the pp chain, but stars only
20% more massive are dominated by the CNO cycle.
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3.3 Equation of energy generation

How much energy will be generated in a shell of thickness ∆r? Since ǫ gives the energy-generation
rate per unit mass (in Wkg−1), the rate of energy generation from the shell per unit volume is
ǫρ(r), where ρ(r) is the density of the star in the shell at radius r. The volume of the shell is
4πr2∆r, so the rate of energy generation in the shell that contributes to the total luminosity of the
star (in W) is

∆L = (4πr2∆r)ǫρ. (31)

Taking the limit of infinitesimal ∆r, we get the equation of energy generation:

dL

dr
= 4πr2ǫρ. (32)

Here, ǫ is in general ǫ = ǫpp + ǫCNO since both the pp-chain and the CNO cycle will contribute to
the total energy generation rate at some level. Most of the energy is generated in the central core
of the star where the temperature is highest.

4 Radiative diffusion

How does the energy generated in the central core of a star escape to the star’s surface? The high
density of atoms and ions in a star act as efficient scatterers of photons. A typical average distance
a photon in the core of a star can travel before scattering – the mean free path – is 1 mm. The
very short mean free path of a photon has two important consequences: (1) The radiation field
takes on a blackbody spectral shape; (2) The radiation leaks out slowly by radiative diffusion.

The diffusion equation for particles is given by:

J = −Ddn/dx, (33)

where J is the flux density of particles (number of particles crossing a unit area per unit time),
n is the number density of the particles, and D is the diffusion coefficient. Statistical mechanics
gives

D = ℓv/3, (34)

where ℓ is the mean free path for particles moving at velocity v. The same relation will hold for
photons of number density nν where the subscript of ‘ν’ is added to allow for the spectrum of the
radiation (photons of different frequencies ν have different number densities). We then have for the
diffusion equation of photons of frequency ν

Jν = −Dνdnν/dr (35)

for diffusion in the radial direction outwards from the star’s centre. Here

Dν = ℓνc/3 (36)

is the diffusion constant for the photons, all of which move at the speed of light c between scatterers,
but have a mean free path ℓν that in general will depend on ν.
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The energy flux density is then given by

fν = (hν)Jν = −Dνd(hνnν)/dr = −DνdUν/dr, (37)

where each photon of frequency ν has energy hν, and the energy density of such photons is

Uν = hνnν . (38)

To get the total energy flux passing through a shell at distance r, we need to integrate over all
frequencies:

F =

∫

∞

0
fν dν = −

∫

∞

0
Dν dUν/dr dν ≡ −D̄ dU/dr (39)

where U =
∫

Uν dν is the total energy density of radiation field, and D̄ is a frequency-averaged
diffusion coefficient.

By convention, we define an opacity κ by

κ =
c

3ρD̄
. (40)

The opacity has units of m2kg−1. It describes the average scattering cross section of a photon on
passing through 1 kg of material responsible for the scattering. So we can write

F = −
c

3ρκ

dU

dr
. (41)

Since the radiation is black body, U = aT 4, where T is the temperature of the stellar material. So
we finally obtain the equation of radiative diffusion:

F =
L

4πr2
= −

4ac

3ρκ
T 3 dT

dr
. (42)

At low temperatures, the gas is only partially ionized. The opacity is then dominated by bound-
free absorption. At higher temperatures, when the ionization is nearly complete, the opacity is
dominated by free-free absorption. The resulting frequency-averaged opacity depends on density
and temperature according to (for bound-free transitions)

κ ∝ ρ T−3.5 (43)

This is known as Kramer’s Law.

Scattering by electrons is also always present. If σT denotes the Thomson cross section for scattering
of photons by free electrons, this gives an opacity of

κes =
neσT

ρ
= (1 +X)

σT

2mH

≃ 0.02(1 +X) m2kg−1, (44)

where ne is the number density of electrons, and X is the mass fraction of hydrogen in the star.
Thomson scattering is the dominant source of opacity in regions of low density and high tempera-
ture.
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To give some indicative values of the opacity and mean free path in stars, for material of solar
abundances, at ρ = 104 kgm−3 and T = 2× 106 K, κ ≃ 10 m2kg−1. This gives a mean free path of
ℓ = 1/κρ ≃ 0.1 mm. At a higher temperature T = 107 K, the opacity decreases to κ ≃ 0.1 m2kg−1

and the photon mean free path increases to ℓ ≃ 1 mm.

5 Summary of the equations of stellar structure

Define:

ρ(r) = mass density at radius r
T (r) = temperature at radius r
P (r) = pressure at radius r
M(r) = mass within radius r
L(r) = luminosity escaping through a surface at r
F (r) = flux of radiation escaping through a surface at r: F (r) = L(r)/(4πr2)
ǫ(r) = nuclear energy generation rate per unit mass at r
κ(r) = opacity of stellar material at r

(1) Equation of Continuity :
dM(r)

dr
= 4πr2ρ(r)

(2) Equation of Hydrostatic Equilibrium :
1

ρ

dP

dr
= −

GM(r)

r2

(3) Equation of Energy Generation :
dL

dr
= 4πr2ǫρ

(4) Equation of Radiative Diffusion : F =
L

4πr2
= −

4ac

3ρκ
T 3 dT

dr
(45)

We would like to solve these subject to the perfect gas law P (r) = [ρ(r)/m̄] kT (r) and simple
power-law scalings for the nuclear energy generation rate and the opacity:

ǫ = ǫ0ρT
α; κ = κ0ρ

β/T γ . (46)
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