Luke M. Butcher

Traversable Wormholes and Scalar Fields

1851 Research Fellow University of Edinburgh

GR21 July 10-15, 2016 arXiv:1405.1283 Phys. Rev. D 90, 024019

Background

Traversable wormholes

- would allow FTL communications & time travel,
- require exotic matter (negative energy) in GR.

Topological Censorship Theorem:

 $ANEC \Rightarrow No Traversable Wormholes$

Average Null Energy Condition (ANEC):

$$\langle \rho \rangle_{\Gamma} \equiv \int_{\Gamma} T_{\mu\nu} \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\lambda} \mathrm{d}\lambda \geq 0,$$

for all complete null geodesics Γ (affine parameter λ).

However, the ANEC can be violated by quantum fields.

The Casimir Effect

Typically, conductive plates

- impose boundary conditions,
- induce $\rho^{\text{Casimir}} < 0$,
- but $\rho^{\text{plate}} > 0$ dominates.
- \Rightarrow ANEC is obeyed.

However...

If ρ^{Casimir} is generated by **topology** and **curvature**, the ANEC can be violated.

Quantum Field

A Long Thin Wormhole, supported by its own Casimir Energy

Seek traversable wormhole spacetime that solves

$$G_{\mu\nu} = \kappa T_{\mu\nu}^{\text{Casimir}} + \kappa T_{\mu\nu}^{\text{ord.}},$$

- $T_{\mu\nu}^{\text{Casimir}}$ induced by the wormhole throat,
- $T_{\mu\nu}^{\text{ord.}}$ obeys all energy conditions.

A long thin wormhole $L \gg a$

- generates a large Casimir energy: $|\rho| \propto 1/a^4$,
- requires less exotic matter: $|\rho| \propto 1/La$,
- \Rightarrow can have both $a, L \gg l_p$ (plank length).

Results obtained for a conformally coupled massless scalar field. Methods:

- mode sum approach with Abel-Plana formula,
- Pauli-Villars regularisation,
- renormalisation (introduces unknown a_0).

 $T_{\mu\nu}^{\text{Casimir}}$ cannot stabilise the wormhole, but slows the collapse significantly.

$ds^{2} = -dt^{2} + dz^{2} + \left[\sqrt{L^{2} + z^{2}} - L + a\right]^{2} (d\theta^{2} + \sin^{2}\theta d\phi^{2})$

Generates: $T_{\hat{\mu}\hat{\nu}}^{\text{Casimir}} = \frac{1}{2880\pi^2 a^4} \left[\text{diag}(-1, 1, -1, -1) 2 \ln(a/a_0) + \text{diag}(0, 0, 1, 1) \right]$

Requires: $\rho^{\text{exotic}} = \frac{-2L^2}{\kappa a(L^2 + z^2)^{3/2}}$

Slow Collapse and Light Crossing

Promote $a \to a(t)$, then Einstein field equations $\Rightarrow \ddot{a} = -1/L$ while $a \ge a_0 e^{1/2}$ and $a^{-3} \ln(a/a_0) \ge \frac{360\pi}{Ll_p^2}$. Hence, the

