
Radiation and Matter
Tutorial Sheet 1 Solutions

Original solutions compiled in 2011 by Dr Brendan Jackson (2008-2012)
and Rebecca Bowler. Please send typos, corrections or queries to raab@roe.ac.uk.

1. We would like to gauge transform our fields A and φ into new fields A′ and φ′

so that
∇.A′ + c−2∂φ′/∂t = 0 .

Recall that the gauge transformations (transformations that leave the physics un-
hanged are:

A′ = A +∇χ ,

φ′ = φ− χ̇ .

The field χ is our gauge field; its value has no effect on the physics, only the math-
ematics. If we replace our transformed (primed) fields by their original values, we
see

∇2χ− c−2∂2χ/∂t2 = −
(
∇.A + c−2∂φ/∂t

)
.

The right-hand side is our original expression that is not equal to zero, and acts
as a source function for the wave-equation for χ appearing on the left-hand side.
If we could solve this wave-equation for χ, we could determine what χ to use so
that our transformed expression is equal to zero. Since the question only asks for a
prescription, there is no need to attempt to write down a general solution, only to
state that the prescription is to do just that.

2. Like all proofs, its difficulty varies tremendously based on what you care to as-
sume. The question is not specific on this, so you should probably treat the question
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as an opportunity to explore how relativity and electromagnetism are related, rather
than a precisely worded task.

The Lorentz gauge : ∇ ·A + c−2∂φ/∂t = 0.

Which can be re-written as two four vectors dotted together:(
c−1∂/∂t
−∇

)
·
(
φ/c
A

)
= 0

Now you can either:

• Assume that these are both four vectors1 and so the expression is Lorentz
invariant.

• Go through the pain of Lorentz transforming each four vector in the equation
and showing that the whole thing is indeed invariant (which you know it should
be anyway from the previous point).

Well if you choose to Lorentz transform your equation:


1
c
∂
∂t′

− ∂
∂x′

− ∂
∂y′

− ∂
∂z′

·


φ′

c

A′x
A′y
A′z

 =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1




1
c
∂
∂t

− ∂
∂x

− ∂
∂y

− ∂
∂z




γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1




φ
c

Ax
Ay
Az

 = 0

=


γ
c
∂
∂t

+ γβ ∂
∂x

−βγ
c

∂
∂t
− γ ∂

∂x

− ∂
∂y

− ∂
∂z

 ·

γ φ
c
− γβAx

−βγ φ
c

+ γAx
Ay
Az



=
γ2

c2

∂φ

∂t
−γ

2β

c

∂Ax
∂t

+
γ2β

c

∂φ

∂x
−γ2β2∂Ax

∂x
−γ

2β2

c2

∂φ

∂t
+
γ2β

c

∂Ax
∂t
−γ

2β

c

∂φ

∂x
+γ2∂Ax

∂x
+
∂Ax
∂y

+
∂Ax
∂z

= γ2(1− β2)
∂φ

c∂t
+ γ2(1− β2)

∂Ax
∂x

+
∂Ax
∂y

+
∂Ax
∂z

1A four vector is something whose magnitude is unchanged under Lorentz transformation
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=


1
c
∂
∂t′

− ∂
∂x′

− ∂
∂y′

− ∂
∂z′

 ·


φ′

c

A′x
A′y
A′z


Which is our original equation, written in four vector form. Hence it is Lorentz
covariant.

We can also write the expression in index notation:

∂

∂xµ
Aµ = ∂µA

µ = ∂µ∂
µχ ,

where we’ve adopted a different gauge to be as general as possible.

Advanced and optional (for those of you studying relativity):

You might like to see how little you can get away with assuming. It is actually
possible to prove the four-vector ∂µ is a four-vector. Recall that the definition of
a four vector is that if we have two coordinate systems (primed and umprimed)
related in the following way (remember to sum over repeated indices):

x′µ = Λµ
νx

ν

where Λµ
ν are constants, then a four vector V µ transforms as

V ′µ = Λµ
νA

ν .

To be precise we should call V ′µ a contravariant four-vector, to distinguish it from
a covariant four-vector that has a similar but different rule:

V ′µ = Λ ν
µ Aν .

Note the location of the index is now below the A symbol (a useful mnemonic: co
rhymes wih below). The matrix components Λ ν

µ are still constants, but is the inverse
to the previous matrix:

Λ γ
α Λα

β = δγβ .

Now consider the derivative four-vector. Using the chain rule,

∂

∂x′α
=
∂xβ

∂x′α
∂

∂xβ
.
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Returning to our coordinate transformation,

x′µ = Λµ
νx

ν

we can multiply by Λγ
α on both sides, and take partial derivatives to yield,

∂xβ

∂x′α
= Λ β

α .

We can substitute this into our earlier equation for the gradient,

∂

∂x′α
=
∂xβ

∂x′α
∂

∂xβ
= Λ β

α

∂

∂xβ
,

which is the definition of a covariant four-vector.

Going back to our gauge condition, the right-hand side is ∂µ∂
µ (the contraction of

two four-vectors is a scalar) multiplying χ. As χ is (we will assert) a scalar, and a
scalar multiplying a scalar gives another scalar, then we have the following situation:

∂µA
µ = f

where now we know ∂µ to be a four-vector and f to be a scalar. From this we can
prove Aµ is also a four-vector, by noting that f doesn’t change if we go to our primed
coordinate system:

∂µA
µ = f = ∂′µA

′µ .

Since ∂′µ is a four vector, we know how it relates to its version in the unprimed
coordinate system:

∂µA
µ = Λν

µ∂νA
′µ .

And now with a little rearrangemnt:

∂µ(Aµ − Λν
µ∂νA

′µ) = 0 .

Either ∂µA
µ is zero (which is not, in general, true - only in some gauges is this the

case) or we must have:
(Aµ − Λν

µ∂νA
′µ) = 0

which implies Aµ = Λν
µ∂νA

′µ, precisely the definition of a four vector.

This proof is actually an example of the Quotient Law, which generalises the result
to expressions with as many indices as you care to use.
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3. We’d like to go from our old gauge where ∇Ȧ 6= 0 to a new one where ∇ ·A′ =
0. Just like in Question 1, we replace our new (primed) gauge fields by their old
(unprimed) ones through the gauge transformation, and we get

∇ ·A +∇2χ = 0,

which provides our expression for χ.

Remember that φ also gets changed,

φ′ = φ− χ̇,

and we should (according to the question!) see our new φ′ obey Poisson’s equa-
tion (sourced by the charge distribution). The easiest way to get at the charge
distribution is via a Maxwell equation:

∇ · E = ρ/ε0 .

Inserting the definition of E = −∇φ′ − ∂A′/∂t into our expression,

∇ · E = −∇2φ′ −∇. (∂A′/∂t) = ρ/ε0 .

But it doesn’t matter which acts first on A′, the ∇ or the ∂/∂t. So we can swap
the order and use our gauge condition ∇.A′ = 0, removing the term and giving us
Poisson’s equation. Note that there is no retardation involved; the potential φ′ is
determined by ρ instantaneously and everywhere.

In the wave zone, by definition A′ is a function of t−r.n̂/c. Using the Mathematical
Appendix (or fairly simply derived), we can replace ∇ by −(n̂/c)(∂/∂t):

∇ ·A′ = −
(
n̂

c

)
· ∂A

′

∂t
= 0

Thus n̂ · Ȧ′ = 0 as required.

4. Our new gauge now needs both ∇.A′ = 0 (the same as the previous question)
and φ′ = 0. We know immediately that the condition is

∇.A +∇2χ = 0 ,

from our previous question. We also found that

−∇2φ′ = ρ/ε0 .
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Since we’re also demanding φ′ = 0, then there can be no charges present at all.

5a. Evaluate: ∫
f(x)δ(g(x)) dx

So this is a problem because you have the delta function not of a single variable,
but a function. Invert the g(x) equation to put the g(x)→ g as the variable in the
integral.

=

∫
f(x(g))δ(g)

dx

dg
dg

Now you know the solution to this integral, it just picks out the value of the integrand
at g = 0 ...

= (f(x(g))
dx

dg
)|g=0 =

f(x(g = 0))
dg
dx
|g=0

5b. Evaluate: ∫
sin3 α dαdφ =

8π

3

Write sin2 α = 1− cos2 α and take out the φ integral:

=

∫ 2π

0

dφ

∫
sinα(1− cos2 α) dα = 2π

∫
sinα− sinα cos2 α dα

= 2π

[
− cosα +

cos3 α

3

]π
0

=
8π

3

6. Maxwell’s equations:

∇ ·B = 0 ∇ · E =
ρ

ε0
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∇×B = µ0(j +
∂Eε0
∂t

) ∇× E = −∂B
∂t

In this case we are in free space, so there are no sources (ρ = 0) and therefore no
current density (j = 0).

For an electromagnetic wave then we have

∇ ·B = 0 ∇ · E = 0

∇×B =
∂E

c2∂t
∇× E = −∂B

∂t

and we know that E,B = F(t− r·n
c

), which, from page 4 of the notes means we can
rewrite the spatial derivatives as time derivatives. Which can be rewritten using a
Maxwell equation to give the LHS:

∇×B = − n̂

c
× ∂B

∂t
=

∂E

c2∂t

Removing the time dependence gives B×n̂ = E
c

and using the equivalent E equation
you get n̂× E = cB. Hence E,B and n̂ (in the k direction) are perpendicular and
form a right handed set.

Because you know that the three vectors are perpendicular you can write B× n̂ =
|B||n̂| sinπ/2 = |B| in the direction of E. And using the equation derived above
this implies |E| = c|B|.

7. This is an exercise to help you explore the different definitions involved.

Consider a beam of radiation, filled with photons of number density n. Imagine the
beam striking a flat target of area A. In a time T , AncT photons pass through the
target area. Each photon has energy h̄ω, so the energy per unit time per unit area
(the definition of flux) passing through the target is S = cnh̄ω.

Momentum density is the momentum p carried by each photon, multiplied by the
number density, pn. Since photons have a momentum h̄ω/c, then

S = nch̄ω = nc2(h̄ω/c) = momentum density × c2 .

8a. The mathematical appendix has some rules that make this question much easier.
The particular rule states that ∇ acting upon a wave solution has the same effect
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as operating with (−n̂/c) (∂/∂t). Replacing the two ∇ operators like this naturally
leads to an identity, showing the wave solution satisfies this equation.

8b. and 8c. The ∇ operating on the exponential brings down −ik, so doing
so twice just gives k2. For the sin function, the first effect is to give −k times cos,
while operating again gives k2. Very similar results emerge from the time derivatives,
showing these satisfy the wave equation too, provided w = kc.

9. Non-relativistic + small circle tells us that we can use the Larmor formula to
calculate the power lost from the charge as it is accelerated in a circle:

Plarmor =
dE

dt
=

2

3

q2

4πε0c3
v̇2

So we need to find the acceleration of the charge and we will be away. The magnitude
of acceleration in a circle is given by a = v2

r
.

Hence the rate of emission of energy is:

Plarmor =
dE

dt
=

2

3

q2v4

4πε0c3r2

For a Bohr orbit in an atom the total energy is given by the kinetic plus the elec-
trostatic:

EBohrorbit =
mv2

2
− e2

4πε0r
= − e2

8πε0r

where the final form is obtained by using the fact that the centripetal force and
electrostatic force must balance for the electron to remain in orbit.

So we now have:

dE

dt
=

2

3

q2v

4πε0r2

(v
c

)3

E(r(t)) = − e2

8πε0r

Which is the rate of loosing energy per second and the total energy, so we can get
a rough timescale for decay:
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lifetime =
inital energy

energy lost per second
=
Eorbit
P

=
3

4

r

v

( c
v

)3

' 10−10s

Where the final number is calculated using the fact that the Bohr atom also has
quantised angular momentum of L = mvr = h̄ in the ground state, and v/c = 1/137.

10. Here the question asks for power, however this would give you one number
which is the flux intregrated over all angles. Hence consider the flux you would
observe at a given position. From the notes we know that S ∝ Ȧ⊥ (p5) and in
the non-relativistic limit in the wave zone A ∝ v ⇒ Ȧ⊥ ∝ v̇⊥. Hence S ∝ v̇2

⊥ -
the Poynting vector, which represents the energy flux, is proportional to the rate of
change of the perpendicular component of the acceleration.

Now draw a diagram showing the acceleration vector, a line of sight and the angle
between them. If you find the component of the acceleration perpendicular to the
line of sight, this is then proportional to the energy flux in this direction.

a

In the first case, assume the particle is oscillating up and down the z-axis and hence
your acceleration vector is also along the z-axis. Alpha in this case is equivalent
to θ in polar coordinates, and if you then find the component of the acceleration
perpendicular to n̂ (your line of sight) you have:

v̇2
⊥ ∝ sinα

which gives you:

S ∝ sin2 α

So there is no flux looking down onto the particle oscillating, and maximum flux
when looking perpendicular. The resultant energy flux distribution pattern is a
doughnut, where here the surface represents the S vector.

b

This is slightly more complicated, but you can see just from considering different
lines of sight and the perpendicular component of the acceleration to this, that there
will be no direction where there is zero flux.

Have the particle oscillating in the y, x plane with acceleration vector a and choose
the line of sight (in direction n̂) to be in the z, y plane for simplicity. Hence:

9



Figure 1: The polar diagram for part a. The charge is osciallating up and down the
z-axis here.

a = a(cosφ, sinφ, 0) n̂ = (0, sin θ, cos θ) φ = ωt

To find the perpendicular component of the acceleration do some vector manipula-
tion:

a⊥ = a− a‖ = a− (a · n̂)n̂

Substitute the vectors in to get:

S ∝ a2(cos2 φ+ sin2 φ cos4 θ + sin2 θ cos2 θ sin2 φ) = a2(1 + cos2 θ)

This shape is instantaneously the same at that from part a, however it changes as
the particle circles around. To plot the polar diagram here, what you want is the
time averaged flux vector. (Remember that φ = ωt). Hence the final equation
above is obtained by time averaging, as 〈sin2 ωt〉 = 1/2 etc..

Which is an egg shape with the long axis in the z direction.
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Figure 2: The polar diagram for part b, time averaged. The charge is circling around
in the x-y plane here.

11. If we have a beam of photons, with number density n, aimed at an electron
with cross-sectional area σ, we can recall from question 7 that per unit time, cσn
photons will pass through the cross-section (i.e. be scattered). The total amount
of energy scattered per unit time, the definition of power P , is given by cσnh̄ω,
which just equals the flux multiplied by cross-section (recall the definition of flux
from question 7). So P = σS, or σ = P/S, which is in fact a general definition of
cross-section.

So much for definitions; now turn to the physics. If an electron finds itself in the
presence of a plane, monochromatic electromagnetic wave, it will experience a force.
Assuming the motion is slow we can ignore the effects of the magnetic fields, so we
only need to consider the force generated by the electric field, which produces an
acceleration of eE/m. The power radiated (working with a classical approximation,
which is fine since huge numbers of photons will be emitted) is given by Larmor’s
formula. So,

P =

(
2

3

)
e2

4πε0c3

e2E2

m2
.

The flux S is given by the Poynting vector, which has a magnitude ε0cE
2. Plugging
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these into σ = P/S gives the cross-section, which (after a little rearrangement) is
what we were looking for. You have derived the Thomson scattering cross-section.

12. Classically

H =

∫
1

2

(
ε0|E|2 +

|B|2

µ0

)
dV

Choose a gauge such that φ = 0⇒ E = −∂A
∂t

B = ∇×A.

Now the vector potential can be written as a series of plane waves as:

A =
∑
k,α

κêk,α(ak,α(t)eik·r + a†k,α(t)e−ik·r)

Where the time dependence of ak,α ∝ e−iwt and κ =
√

h̄
2ε0ωV

.

To find |E|2 differentiate wrt time...

∂A

∂t
=
∑
k,α

κêk,α(−iωak,α(t)eik·r + iωa†k,α(t)e−ik·r)

Now take the modulus squared of this:∣∣∣∣∂A∂t
∣∣∣∣2 =

∑
k′,α′

κ′êk′,α′(−iω′ak′,α′(t)eik
′·r+iω′a†

k′,α′(t)e
−ik′·r)

∑
k,α

κêk,α(−iωak,α(t)eik·r+iωa†k,α(t)e−ik·r)

By expanding out the equation above we are going to have lots of terms like this:∫
ei(k1−k2)·r dV

where the integral is over the total volume occupied by the modes. Now because
the k vector is quantised, this integral is going to be zero unless k1 = ±k2 so that
the integrand is unity. This results in only 4 terms remaining, 2 with k = k and 2
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with k = −k, and given that a†−k,α = ak,α and êk,α · ê−k,α = −1 we finally end up
with : ∣∣∣∣∂A∂t

∣∣∣∣2 = 2V κ2ω2
∑
k,α

(ak,αa
†
k,α + a†k,αak,α)

For the magnetic field term note that (you need a vector identity here):

|B|2 = |∇ ×A|2 =

∣∣∣∣ n̂c × ∂A

∂t

∣∣∣∣2 =

(
n̂ · n̂
c2

)(
∂A

∂t

)2

−
���

����(
∂A

∂t
· n̂
c

)2

Hence the B field term is the same as the E field term we just calculated divided by
c2. Substitute into original expression to find the solution for the Hamiltonian.

13. The Poynting vector is related to the momentum density by:

K =
1

c2

∫
S dV

Using the same gauge as in question 12, the Poynting flux can be written as:

S = E×B/µ0 = −∂A
∂t
× (∇×A) /µ0

= −∂A
∂t
× (− n̂

c
× ∂A

∂t
)/µ0 =

(
∂A

∂t

)2
n̂

cµ0

−
����������
(
∂A

∂t
· n̂
c

)
∂A

∂t
/µ0

Where the last expression follows from the vector triple product rule. Now the
expressions from 12 can be substituted and by writing kn̂ = k and ω = ck we
obtain the answer.
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