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Radiation and Matter

I. Physical Introduction

1 Review of Classical Radiation

This section reviews the properties of the electromagnetic fields in free space and
shows

(1) that they are derivable from four potentials (φ, Ax, Ay, Az),

(2) that the potentials can be changed (gauge transformations) without changing the physics
i.e. the resulting fields,

(3) that the equations governing the potentials (and by implication Maxwell’s field equa-
tions) are Lorentz covariant,

(4) that at distances large compared with source size and wavelength (the wave zone) the
potentials and fields can be expressed as transverse waves with E = cB and E perpendicular
to B,

(5) that the fields due to a point charge lead – via the Poynting vector – to Larmor’s formula
for classical radiation (power proportional to acceleration squared),

(6) that radiation in an otherwise empty cubic box can be expressed as the sum of plane
standing or travelling waves with an infinite but discrete set of frequencies and related wave
vectors and polarization directions; the total energy is the sum of the energies of each of
the modes.

(7) that the dynamical similarity between the real component of the amplitude of the vector

potential and the displacement of a simple harmonic oscillator leads to a classical formalism

called the ‘oscillator expansion’ which will be exploited in the section on quantization

1.1 Maxwell’s equations, field energy and potentials

1.1.1 Maxwell’s equations

Maxwell’s equations in vacuo are

∇∧E = −∂B/∂t ∇.B = 0

∇∧B = µ0(j + ∂(ǫ0E)/∂t) ∇.E = ρ/ǫ0.
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1.1.2 Field energy and Poynting vector

By manipulating these equations (see appendix) we can arrive at the result

∂

∂t

∫

(
ǫ0
2
E2 +

1

2µ0
B2) dV = −

∫

j .E dV −
∫

surface
E∧B/µ0 . ds.

The first term on the right hand side is dissipation of energy thro’out the volume
(Ohmic dissipation) so in a situation where the second term is zero ( e.g. boundary
surface at infinity where fields are negligible), this is the total rate of loss of energy,
which implies (a) that the integral on the left side is the field energy, and (b) that
the surface integral also represents energy loss, and that the vector

S = E∧B/µ0,

known as the Poynting vector, may be regarded as the energy flux (note that only
the surface integral is defined, and there are situations - not encountered here - in
which this simple identification of S with energy flux is suspect).

1.1.3 Electromagnetic potentials

By using the first pair of Maxwell’s equations, which evidently express constraints
on the fields rather than saying how they arise, the fields E,B can be seen to be
derivatives of potential functions A and φ:

B = ∇∧A E = −∂A/∂t −∇φ.

The potentials A, φ can be changed by the gradient of an arbitrary function χ(r, t),
without changing the values of E,B. This is called gauge invariance.

A→ A′ = A+∇χ, φ→ φ′ = φ− ∂χ/∂t.

Substituting the potentials in the second pair of Maxwell’s equations, re-arranging,
and re-labelling the constant (µ0ǫ0)

−1 = c2, we see the wave magic in Maxwell’s
equations – due to the insertion by Maxwell of the ∂E/∂t term –

∇2A− ∂2A

c2∂t2
−∇

(

∇.A+
∂φ

c2∂t

)

= −µ0j

and

∇2φ− ∂2φ

c2∂t2
+ ∂/∂t

(

∇.A+
∂φ

c2∂t

)

= −ρ/ǫ0.

These are nearly wave equations, and can be made so using the gauge invariance
of the fields: It is possible to choose χ so that the transformed potentials satisfy
∇.A′+∂φ′/c2∂t = 0, and then the potentials (drop the primes) satisfy wave equations
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2A = −µ0j
2φ = −ρ/ǫ0

where 2 is shorthand for ∇2− (∂2/c2∂t2). Note that this operator is Lorentz invari-
ant. Furthermore, ρ transforms like the time-component of a Lorentz 4-vector since
dq = ρdx dy dz, the charge element, is invariant as is dt dx dy dz. It is straightforward
to show that the rest of the 4-vector is j. This carries the implication that if we write
jµ = (j, ρc) and Aµ = (A, φ/c), the equations for the potentials take the Lorentz
covariant form

2Aµ = −µ0j
µ.

1.1.4 Solution of the wave equation

At this point it has been shown that Maxwell’s equations can be written as a well-
posed problem in potential theory: four equations in four unknowns with four source
functions. Moreover, it is also clear that Maxwell’s theory is relativistic ( i.e. Lorentz
covariant). This is not pursued further here.

Returning to the potential equations, we shall consider the vector potential equation

2A = −µ0j,

whose solution (see appendix) is

A(r, t) =
(

µ0

4π

)
∫

j(r′, tret)

|r− r′| d
3r′

where tret, the ‘retarded time’, is given by

tret = t− |r− r′|/c.
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1.2 Potentials in the wave zone – radiant energy
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By reference to the diagram, |r− r′|/c may be written r.n/c− r′.n/c and so

tret = t− r.n/c+ r′.n/c.

Note that the distance from source to observer is very great, so that |r−r′| is approx-
imately constant in the denominator, and will be approximated by R0, the distance
from the observer to a standard point in the source. In the function j(r′, tret) which is
now the integrand, the variable r′ is the (dummy) integration variable on integration
over the source, and so the result is a function of the non-integrated parameters,
t− r.n/c :

A(r, t) ≃ µ0

4πR0

∫

j(r′, tret) d
3r′

≃ µ0

4πR0

∫

j(r′, [t− r.n/c] + r′.n/c) d3r′

= F(t− r.n/c) /R0, say.

The ‘0’ is dropped from the R after this. This expression for A is that of an outgoing
wave, amplitude decreasing as 1/R, travelling with velocity c1. We have uncovered
the constancy of the velocity of light.

We can use (see appendix) the following relations for a vector F (or scalar f) whose
argument is of the form t− n.r/c :

∇.F = −n
c
.
∂

∂t
F, ∇∧F = −n

c
∧

∂

∂t
F, ∇f = −n

c

∂

∂t
f

and since in this, the wave zone, variations in the denominator R are negligible, these
results can be applied to A, and to B = ∇∧A; this allows us to write the first and
third Maxwell equations as

n∧E = cB, cn∧B = −E.
1Note that a static (1/R, Coulomb) potential may be part of the solution; we disregard it in what

follows; its gradient falls off as R−2 and it carries no radiation.
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(Use j = 0 in the wave zone; if n∧Ė = cḂ, then n∧E = cB, etc. You can also get
these results directly from the source-free Maxwell equations).

Thus E, B, n form a right-handed triad (like x, y, z), and E = cB.
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The energy transported by the field is determined by the Poynting vector S which in
the wave zone becomes

S = −(n∧Bc)∧(B/µ0) = B2cn/µ0 = ǫ0cȦ
2
⊥n

and the form derived in the wave zone for A ∝ R−1F(t− r.n/c) can be substituted.
There is a simple and very important case which can be explicitly solved – the point
charge.
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1.3 Point charges, the Liénard-Wiechert potentials,

the Larmor radiation formula

The current density of a point charge is

j(r′, t) = qvδ(r′ − x(t))

where x(t) is the given trajectory of the point charge (v = dx/dt) and so the vector
potential is (previous section)

A(r, t) ≃ µ0

4πR

∫

j(r′, tret) d
3r′ =

µ0q

4πR

∫

v(tret)δ(r
′ − x(tret)) d

3r′.

Since the delta function depends on r′ through tret we cannot just collapse the integral
on the delta function at r′ = x. We can deal with this most simply by using the neat
trick of writing

j(r′, tret) =
∫

j(r′, τ)δ(τ − tret) dτ

getting

A(r, t) =
µ0q

4πR

∫ ∫

v(τ)δ(r′ − x(τ))δ(τ − tret) dτ d3r′.

As τ is independent of r′ we can now integrate over space by collapsing the space
delta function onto x, noting that tret then becomes t− |r− x(τ)|/c, to get

A(r, t) =
µ0q

4πR

∫

v(τ)δ(τ − tret) dτ.

Now note that (a) for Dirac delta functions

∫

f(x)δ(g(x)) dx ≡ (f(x) / dg/dx)g=0 ,

and (b) ∂(τ − tret)/∂τ = (1− v.n/c), so that finally (writing v/c = β)

A(r, t) =
µ0qv

4πR

1

1− β.n

and an analogous equation for φ (µ0 → ǫ−1
0 , qv → q).

These are the Liénard-Wiechert potentials in the wave zone. We drop the relativistic
factor for now, and so

A(r, t) =
µ0qv

4πR
,

and from section 1.2

S =
1

4πR2

q2/c3

4πǫ0
v̇ 2 sin2 α
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Since dΩ = sinα dα dφ and
∫

sin3 α dα dφ = 8π/3,

P =
∫

S.ds =
∫

SR2 dΩ =
2

3

q2/c3

4πǫ0
v̇ 2,

which is Larmor’s radiation formula.
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1.4 The radiation field as a set of oscillators

We specify the electromagnetic field, free of sources, by its vector potential A, satis-
fying

∇2A− Ä/c2 = 0.

We choose a gauge such that φ = 0. Further, since ρ = 0,

∇. E = ∇.
(

−∂A
∂t

)

= 0,

or ∇. A = const. Now regauge with gauge function χ independent of t; it doesn’t
change φ = 0, but can be used to transform A to give also ∇. A = 0. We now
have all of the information about the electromagnetic field in just two components
of the vector potential (one suppressed by requiring ∇.A = 0), instead of the four
components of the complete set.

In order to deal with each wave separately, use the old trick of putting the radia-
tion in a big box with boundary conditions, so that the states become denumerable,
analogously to the transverse vibrations of a string held stationary at either end.

We enclose the electromagnetic field in a very large cubic box with side L. Then the
potential is expressible as a triple Fourier series with amplitudes Xk:

A(r, t) =
∑

k

Xk(t)e
ik.r.

The wave vector k = (2π/λ)n = (kx, ky, kz), and k takes only the discrete values
(2π/L)(nx, ny, nz), with the n’s positive or negative integers. The summation is over
these integers.

The condition ∇.A = 0 leads to k .Xk(t) = 0, ie the waves are transverse. Further-
more, the wave equation gives

Ẍk(t) + ω2Xk(t) = 0

where ω = ck, and so a solution is Xk(t) = X
(1)
k
e−iωt + X

(2)
k
e+iωt with X

(1)
k
,X

(2)
k

arbitrary time-independent vectors. Putting this in the expression for A(r, t) and
reversing the signs of k in all the terms in the second sum (doesn’t affect the result!),

A(r, t) =
∑

k

X
(1)
k
e−i(ωt−k.r) +

∑

k

X
(2)
−k
e+i(ωt−k.r).

Then note that if we put X
(2)
−k

=
(

X
(1)
k

)∗
that this expression is real, as required.

The direction of vibration Xk, perpendicular to k, can be expressed in terms of two
directions, represented by the unit vectors ek,α where ek,1 is e.g. in the ‘vertical’
plane through k, and ek,2 completes a right-handed triad with n = k/k and ek,1.

Writing X
(1)
k

=
√

(h̄/(2ǫ0V ω) ek,αak,α then gives

A(r, t) =
∑

k,α

√

h̄

2ǫ0V ω
ek,α

(

ak,α(t)e
ik.r + a∗

k,α(t)e
−ik.r

)

.
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The constant square root in this equation is chosen with an ulterior motive to which
we return in due course – it obviously multiplies the amplitudes ak,α, a

∗
k,α. Notice

that the factor e−iwt has been absorbed into ak,α and correspondingly eiwt into a∗
k,α.

Any electromagnetic field in the box can be expressed as a sum of such waves (since
they are the only ones satisfying the boundary conditions, they form a complete set).
Thus the field can be expressed as a denumerable set of independent amplitudes ak,α.

Let us review what has been done. The classical source-free electromagnetic field
is expressed in terms of its potentials from which all other properties are derivable.
These potentials (except for the static potentials) can be written as an infinite set of
transverse waves, if the gauge is chosen so that ∇.A = 0. The field is assumed to be
contained within a volume so large that edge effects are negligible, except that the
boundary conditions ensure that the wave numbers take discrete values (very closely
spaced, so that sums over these can be approximated by integrals when convenient;
the larger the assumed box, the closer the spacing). We refer to the state of vibration
of the wave in one of these discrete states as a mode. Then

A(r, t) =
∑

n

(Anan +A∗
na

∗
n)

where n is an index labelling the modes.2 In the case of plane waves, n ≡ (k, α).

1.5 The oscillator energies

The total field energy H =
∫ 1

2
(ǫ0E

2 + B2/µ0) dV can be expressed first in terms of
the vector potential, expanded into linear or spherical modes as above, which after a
LOT of grinding down gives a sum over states of independent terms

Hn =
1

2
(ana

∗
n + a∗nan) h̄ω,

where we haven’t commuted the a, a∗ for future convenience.

What is the linear momentum density of the plane wave field? Consider a pulse of
radiation in a given direction containing energy E, and for which special relativity
requires E = pc as it travels with the speed of light. By measuring the flow of this
pulse across a surface we find SA∆t = E where S is the magnitude of the Poynting
vector, A is the cross section of the pulse, ∆t = l/c is the time for the pulse of length
l to pass. Hence S = c2p/(Al), and is therefore c2 times the momentum density in
the pulse.

A calculation similar to that for energy then gives for total momentum

K = c−2
∫

S dV =
∑ 1

2
(ak,αa

∗
k,α + a∗

k,αak,α) h̄k.

Now introduce real linear combinations of an, a
∗
n

Qn =
√

h̄/2ω(an + a∗n), Pn = Q̇n = −iω
√

h̄/2ω(an − a∗n).
2It is possible to use the fundamental vibrations of other complete sets instead: for instance,

spherical waves of given angular momentum, instead of plane waves
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Then the energy per mode can be written

Hn =
1

2
(P 2

n + ω2Q2
n).

Furthermore Pn and Qn obey

∂Hn/∂Qn = −Ṗn, ∂Hn/∂Pn = Q̇n,

so behave as dynamically conjugate momentum and coordinate respectively, with
respect to the Hamiltonian H ; these are Hamilton’s equations.

These equations are identical to the equations of motion of a harmonic oscillator of
unit mass and natural frequency ω = kc (see next section). Each state is formally the
same as such an oscillator, each independent of the others. The energy of the elec-
tromagnetic field in the box is identical with that of a set of independent oscillators,
one for each mode (k, α). This was the start of Dirac’s breakthrough to quantum
electrodynamics.
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2 Quantum Radiation

This section
(a) Reviews the quantum mechanics of SHM, using the ‘number representation’ and
ladder operators

(b) Completes the analogy between radiation oscillations in a box and SHM, and
carries across the quantization procedure to the waves, thus inventing photons or
radiation quanta.

2.1 Quantized SHM

First of all the quantum mechanics of the simple harmonic oscillator will be reviewed
from the point of view of annihilation and creation operators. Then the connection
noted above with modes of the radiation field is used to quantize the radiation field
(Dirac’s second step to quantum electrodynamics, soon after the invention of proper
quantum mechanics).

Assume for simplicity that the oscillating mass of the oscillator is unity. Then the
energy equation is

H =
1

2
(p2 + ω2q2),

where q is the displacement and p is the corresponding canonical momentum (in this
case it is v) with respect to the Hamiltonian H . These obey Hamilton’s equations

∂H/∂q = −ṗ ∂H/∂p = q̇.

To make this a quantum calculation p, q and therefore H become operators and p, q
obey

[q, p] = ih̄.

Now the clever bit. New operators c, c† are defined by (cf a, a∗ in previous section)

c = (2h̄ω)−1/2(ωq + ip) c† = (2h̄ω)−1/2(ωq − ip).

so that

[c, c†] = 1 and H =
h̄ω

2
(cc† + c†c).

These two results give also the relations

cc† = (H/h̄ω) + 1
2
, c†c = (H/h̄ω)− 1

2

which are used below.

Here is Dirac’s argument for the states of a harmonic oscillator.

Let |E〉 be an eigenstate of H with eigenvalue E (i.e. H|E〉 = E|E〉). The ‘squared
length’ (it would be

∫

ψ∗ψdV in wave mechanical representation) of such an eigenstate
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is 〈E|E〉 and similarly for the state c|E〉 it is 〈E|c†c|E〉. From the operator relations
above,

〈E|c†c|E〉 = (E/h̄ω − 1
2
)〈E|E〉.

where 〈E|E〉 must be positive and 〈E|c†c|E〉 must be positive or zero. Thus (E/h̄ω−
1
2
) ≥ 0. The equality only occurs for some state |E0〉 if c|E0〉 = 0; denote such a state

as |0〉, i.e. c|0〉 = 0.

Next,
Hc|E〉 = (cH − h̄ωc)|E〉 = (E − h̄ω)c|E〉

and so if |E〉 is an eigenstate of H with eigenvalue E, c|E〉 is an eigenstate with
eigenvalue E − h̄ω. By repeated application of operator c we can form eigenstates
with eigenvalues E − nh̄ω, with n an integer as large as we please, creating energy
eigenvalues arbitrarily negative, unless at some point in the sequence we create the
eigenstate |0〉 introduced above. This therefore must happen. Thus possible states
are |0〉 with energy eigenvalue 1

2
h̄ω and states with eigenvalues nh̄ω greater than that,

n being any positive integer, En = (n+ 1
2
)h̄ω.

These states can be made from |0〉 using the operator c† since

Hc†|E〉 = (E + h̄ω)c†|E〉

i.e. c†|E〉 is the eigenstate ‘one up’ from |E〉. Name the ‘nth up from zero’ eigenstate,
after normalization, |n〉. It will have eigenvalue (n + 1

2
)h̄ω.

To normalize the eigenstates suppose |0〉 is defined so that 〈0|0〉 = 1. Then proceed
by induction. If the nth eigenstate is normalized,

〈n|cc†|n〉 = 〈n|H/h̄ω + 1
2
|n〉 = (n+ 1)〈n|n〉 = n + 1.

Now the (n+ 1)th eigenstate is created, un-normalized, by c†|n〉. Put

c†|n〉 = α|n+ 1〉, so that 〈n|cc†|n〉 = |α|2〈n+ 1|n+ 1〉 = |α|2

where α is a constant and |n + 1〉 is the normalized eigenstate. By comparison with
the previous result, α =

√
n+ 1 and so

c†|n〉 =
√
n + 1 |n+ 1〉.

Conversely
〈n|c†c|n〉 = n〈n|n〉 = n

and so
c |n〉 = √n |n− 1〉.

The operator c† increases the energy by one quantum (creates a quantum) and am-
plifies the state by

√
n+ 1 and the operator c decreases the energy (annihilates a

quantum) and amplifies the state by
√
n.

Using these operators all the properties of SHM oscillators can be deduced.
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2.2 Quantizing the radiation oscillators

The radiation oscillators are quantized identically to SHM. The classical values defined
in section 1.4 become non-commuting operators:

[Qn, Pn] = ih̄, [an, a
†
n] = 1

and clearly the amplitudes an, a
†
n (which have the same relation to Pn, Qn as c, c† to

p, q), have become the annihilation and creation operators for quanta in the state n,
which, analogously with the harmonic oscillator case, can be labelled |Nn〉. Note the
use of superscript ‘†’ instead of ‘*’ to denote the Hermitian conjugate of an operator,
as opposed to the complex conjugate of a number.

The energy in state |Nn〉 is (Nn+
1
2
)h̄ω but the 1

2
is dropped for reasons of expediency

(it can’t be measured ... ). A transition caused by the operator an from |Nn〉 gives√
Nn|Nn − 1〉. The creation operator produces state

√
Nn + 1|Nn + 1〉.

Photons It is convenient to talk of the energy quanta in these states as photons, with
energy h̄ω and linear momentum h̄k in the case of plane waves, or angular momentum
lh̄ in the case of spherical waves, as specified by the state. The same physical system
is being described whether we specify the numbers of photons in each momentum
and polarization state, or specify the energy (quantized) of all oscillators, identified
by their momentum and polarization.

(The state functions multiplying the operators we choose to normalize to ‘one photon
per state in the box’.)

Notice, however, that photons only exist in the context of the specified states! All
sorts of paradoxes and conundrums ensue if this is ignored.

3 Quantum interaction of radiation with matter

The previous section sketched the quantum nature of free radiation. This section
(a) introduces Fermi’s Golden rule as one expression of time dependent perturba-
tion theory, giving the rate of transition between two states under the action of a
perturbation

(b) sketches a formal way in which the interaction between radiation and matter can
be expressed as a perturbation on free particles and fields

(c) derives the form of the transition rate

(d) introduces the dipole approximation

(e) shows that the photon occupation numbers in thermodynamic equilibrium are
those of the black body distribution
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3.1 Fermi’s Golden Rule

Time dependent perturbation of a stationary system results in a state function that
varies in time in a non-trivial way (i.e. not just by a term eiEt/h̄). The initial
(stationary) state function Ψ would be represented as a linear superposition of the
eigenstates of the system, the coefficients bj being the amplitudes to be in each state.
With the perturbation switched on, these amplitudes change :

Ψ =
∑

bj(t)uj(r) e
−iEjt/h̄.

Schrödinger’s equation is
ih̄ ∂Ψ/∂t = HΨ

where the Hamiltonian H = H0 + H ′ and H ′ is the perturbing Hamiltonian. If the
initial state is ‘i’ this reduces to

ih̄ (dbf/dt) = H ′
fi e

−i(Ei−Ef )t/h̄

since
∫

u∗fui dV = δif and H ′
fi is defined as

∫

u∗fH
′ui dV .

This leads, if H ′ is time independent, and with the usual set of approximations, to

w = |bf |2/t t→∞−→ 2π

h̄
|H ′

fi|2 δ(Ef − Ei)

This is the rate of transition from a specified state ‘i’ to a specified final state ‘f ’.
If there are many possible final states ‘f ’, then the probabilities of transition add.
If these matrix elements all have virtually identical values, and the final states are
closely-spaced in energy with a density of (dN/dE)f states per unit energy interval,
then the the result of the sum of rates is Fermi’s Golden Rule :

w =
2π

h̄
|H ′

fi|2 (dN/dE)f , Ef = Ei

3.2 The interaction Hamiltonian from gauge invariance

Since observables are bilinear functions of the wave function (ψ∗ψ for example), the
same physics is described by ψ and eiαψ (gauge invariance). However, the Schrödinger
equation turns out not to be invariant to this change. The free particle equation is

ih̄
∂ψ

∂t
=

p2

2m
ψ = − h̄2

2m
∇2ψ

while inserting eiαψ for ψ in the equation gives

ih̄(
∂

∂t
+ iα̇)ψ = − h̄2

2m
(∇+ i∇α)2ψ

and the solution will depend on α(r, t). A way to sort this is to include, in addition
to ψ, fields which transform under change of gauge so as to eliminate the ephemeral
α. We can do this by adding f(r, t) to the operator ∂/∂t, and F(r, t) to ∇ in the
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original equation, and arranging that they transform by the subtraction of iα̇ and
i∇α respectively, and the job is done. The doctored Schrödinger equation is

ih̄(
∂

∂t
+ f)ψ = − h̄2

2m
(∇+ F)2ψ

which is gauge invariant at the expense of the introduction of the new fields f,F
and their transformations under ψ → eiαψ. On examination, these fields have the
same gauge properties as we saw already in electromagnetism, and can be treated as
the potentials A, φ on multiplication by a factor. The gauge invariant Schrödinger
equation can then be written

ih̄
∂ψ

∂t
=

(p− qA)2

2m
ψ + qφψ

This substitution (relativistically pµ → pµ − qAµ) is known traditionally as minimal

coupling.

As an approximation, we use (p − qA)2 = p2 − q(p .A +A . p), neglecting the A2

term. Also, because ∇.A = 0, we can convert3 p.A to A .p, so in this approximation,
Schrödinger’s equation becomes (remember we have φ = 0)

ih̄
∂ψ

∂t
=

p2

2m
ψ − q

m
A . p ≡ H0 +Hint.

The interaction, or perturbation, Hamiltonian is thus

H ′ = − q

m
A . p

3.3 Radiative transitions

The chosen initial state of the system is the product of an unperturbed atomic state,
say |X〉, and unperturbed radiation state specified by all the photon occupation
numbers, say |Nk,α〉 (this is shorthand for |Nk1,α1

, Nk2,α2
, ...to infinity〉). The states

are products because the atomic states are independent of those of the radiation. The
chosen final state of the atomic system is |Y 〉, so the final state is |Y 〉|N ′

k,α〉.

The matrix element of H ′ between an initial state and the final state is therefore

〈Y |〈N ′
k,α|H ′ |X〉|Nk,α〉

The radiation factor 〈N ′
k,α|A|Nk,α〉 can be simplified by using a little physical intuition

(although the maths of Fermi’s Golden rule will ensure we get it right even without,
but at the expense of a page of calculation). First, as we derived in section 1.4,

A =
∑

k,α

√

h̄

2ǫ0ωV
ek,α

(

ak,α(t)e
ik.r + a†

k,α(t)e
−ik.r

)

and we can see that A as an operator comprises a linear combination of ak,α and a†
k,α

operators.

3Most easily seen in wave function representation: ∇ .Aψ = (∇ .A) ψ +A .∇ψ = A .∇ψ.
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If we choose atomic state Y so that EY > EX , then to conserve energy (enforced by
Fermi’s Golden rule), since the atomic system gains energy the radiation must lose
it. We need only consider states for which h̄|k|c = EY − EX , and only annihilation
(not creation) operators. There will be a huge number of possible final states of the
radiation field (i.e. of the atomic system + radiation field), so that requirement in
Fermi’s Golden rule is met, and we need only do the calculation for one of them. The
radiation matrix element therefore contains only one of the terms in the sum above,

〈N ′
k,α|

√

h̄

2ǫ0ωV
ek,αe

ik.rak,α|Nk,α〉 =
√

h̄

2ǫ0ωV
ek,αe

ik.r〈N ′
k,α|ak,α|Nk,α〉.

The matrix element has non-zero value only when the set of occupation numbers N ′

is identical to the set N , except that N ′
k,α = Nk,α − 1 for the particular term (k, α)

that we chose. This is because each of the oscillators is independent, and the states
are orthonormal, i.e., in the bra-ket they produce a factor 1 if the Ns are the same,

zero otherwise; and ak,α|Nk,α〉 =
√

Nk,α|Nk,α−1〉. Thus the radiation matrix element
becomes

√

h̄

2ǫ0ωV
ek,αe

ik.r
√

Nk,α.

We can now write down the matrix element for the absorption of a photon by an
atomic system :

H ′
fi =

q

m

√

h̄

2ǫ0ωV

√

Nk,αMY X(k, α), where MY X(k, α) = ek,α .
∫

ψ∗
Y e

ik.rpψX dV.

Emission : The corresponding term, if Y had lower energy than X and a photon

were emitted, would be the nearly the same :
√

Nk,α would become
√

Nk,α + 1 and

eik.r would become e−ik.r.

Density of final states : If this matrix element is put into Fermi’s Golden Rule
formula, the density of final states is that of the photons times that of the atomic
final states. The number of photon states near the one specified is given by

dNphoton = (dN/dE) dE =
d3k

(2π/L)3
= (2π)−3V k2dk dΩ.

Note that dN/dE ∝ dΩ so therefore is ‘w’ – write it as w(Ω)abs dΩ. Since E = h̄kc,
the density of states (per energy) (dN/dE) = (2π)−3V k2 dΩ /h̄c.

This then gives (putting q = −e for the electron and recalling that kc = ω) the
transition rate for absorption

w(Ω)absdΩ =
ωdΩ

2πh̄c3m2
Nk,α

e2

4πǫ0
|MY X(k, α)|2

This is the probability per second that a photon of polarization α, frequency ω = |k|c
and direction within dΩ of k will be absorbed, and the term got by replacing Nk,α

by Nk,α + 1 is the corresponding emission probability w(Ω)emdΩ.
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3.4 Black body radiation

From the above the emission transition rates for photons in dΩ about k with polar-
ization α

w(Ω)em/w(Ω)abs = (Nk,α + 1)/Nk,α.

In thermodynamic equilibrium in a two state atomic system, (i) nu = nle
−x, with

x = (Eu − El)/kT = h̄ω/kT , and (ii) nlwabs = nuwem, i.e. number going up equals
number going down per second. Hence the equilibrium occupancy is

Nk,α = 1/(ex − 1).

The density of photon states (in the box again!) in directions within dΩ is 2V dΩ ν2 dν/c3,
using k = 2πν/c. The factor 2 is because we are counting both polarization states,
which have the same k and therefore the same energy.

The energy density of radiation in thermodynamic equilibrium (it’s isotropic so we
can integrate over all angles by setting dΩ→ 4π) is therefore

u(ν) =
8πν2

c3
hν

ehν/kT − 1

and the specific intensity of black body radiation, Bν(T ), is c/4π times this, i.e.

Bν(T ) =
2ν2

c2
hν

ehν/kT − 1
.

(Specific intensity is discussed below).

3.5 Electric dipole transitions

3.5.1 The dipole transition rate

The dipole approximation consists of putting eik.r = 1 in the expression for
MY X(k, α), which is the same as saying that the perturbing ‘potential’ doesn’t vary
over the extent of the atomic system (i.e. no tidal or quadrupole and higher effects)
and is justified if the wavelength of the radiation is much greater than the atomic
dimensions.

One further simplification is required: in the non-relativistic limit p = mv. The
operator v is related to operator r by requiring that the matrix elements of v are the
time derivatives of the matrix elements of r :

vY X =
d

dt

∫

ψ∗
Y rψX dV =

∫

∂ψ∗
Y

∂t
rψX dV +

∫

ψ∗
Y r
∂ψX

∂t
dV.

Using Schrödinger’s equation to replace the partial derivatives with the eigenstate
energies we get

vY X = (1/ih̄)(−EY rY X + EXrY X) = iωrY X
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Thus we can replace p by imωr in the matrix element, which gives an extra factor
ω2 in the rate.

In this approximation therefore,

w(Ω)absdΩ =
ω3dΩ

2πh̄c3
Nk,α

e2

4πǫ0
|rY X .ek,α|2 , where rY X =

∫

ψY rψX dV

The corresponding value for emission is identical with the exception that Nk,α is
replaced by Nk,α + 1.

Consider the spontaneous emission rate (i.e. reduce Nk,α + 1 to 1). Sum over the
polarization directions α and integrate over all emission directions4. We get the rate
of spontaneous emission of a photon of any polarization in any direction:

wspon =
4ω3

3h̄c3
e2

4πǫ0
|rY X |2 .

This is the quantum mechanical counterpart (when multiplied by h̄ω) of the Larmor
formula.

If the radiation is isotropic, i.e. Nk,α is the same for states with wave vectors of
magnitude k in every direction, or if we are averaging over randomly oriented atomic
systems, we have as corresponding rates

wabs = Nk,αwspon, wem = (Nk,α + 1)wspon

wem = wabs + wspon.

3.5.2 Dipole selection rules

w depends on the matrix element
∫

ψ∗
Y rψX dV . Typically, these single particle wave

functions ψ can be expanded – as is the case for the hydrogen atom – in products of
spherical harmonics Y (θ, φ) (for a non-symmetric atomic system sums of several such
products may be necessary). The space integral then factors into a radial integral,
and an angle integral.

As an example, the z-component of r is r cos θ. The integration over dV = r2dr dΩ
is sepaerable and the resulting (θ, φ) integral in the matrix element is

∫

Y ∗
lY ,mY

(θ, φ) cos θ YlX ,mX
(θ, φ) dΩ.

This integral is only non-zero if lY = lX±1 (because of the orthogonality properties of
the Y (θ, φ), and in general if state Y is of opposite parity to state X). The selection
rules are, for reference:

Electric dipole : JY = JX−1, JX , JX+1 (J is total angular momentum quantum number)
parity change
In the case of LS coupling, also
no spin change
same rules for orbital AM L as for total AM J .

4 |ek,1.r|2 + |ek,2.r|2 = |r|2 − |(k/k).r|2 = |r|2 sin2 θ where θ is the angle between k and r, since
ek,1, ek,2 and k are all mutually perpendicular. Integrate sin2 θ over all directions to get 8π/3. This
leads to the result.
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3.6 Electric quadrupole and magnetic dipole transitions

The above selection rules often forbid astronomically interesting transitions, and we
so have to improve on the dipole approximation.

3.6.1 Transition rates

The electric dipole approximation was eik.rv ≃ v → iωr, which was justified by
the smallness of k.r when r ranged over atomic dimensions, so that eik.r ≃ 1. But
if the resulting term vanishes, we must examine the next term in the expansion of
eik.r = 1 + ik . r+ .... This gives the matrix element (cf MY X(k, α) in section 3.3)

ek,α.
∫

ψ∗
Y ik.rpψX dV = imk.

∫

ψ∗
Y rvψX dV . ek,α,

which is evidently smaller than the dipole term by the factor of order k times the size
of the atomic system, so that the transition rate is less by roughly (a0/λ)

2.

We shall write the operator as the sum of symmetric and antisymmetric parts:

rv =
1

2
(rv + vr) +

1

2
(rv − vr).

The first – quadrupole – term is 1
2
d(rr)/dt, and just as for v = d(r)/dt, for which

the matrix element was iωrY X , so we find the matrix element of the first term is
1
2
iω(rr)Y X . It couples the ellipsoidal (quadrupole) charge distribution to the electric

field (like tides in gravity). Transitions via this process are important for some nuclear
state transitions, and for ground state transitions in molecular hydrogen, for example.

In the second term put v = p/m, and the expression for this part of the matrix
element becomes (remember k = kn = (ω/c)n)

1

2m
ik.(rp− pr) . ek,α = − 1

2m
ik∧L . ek,α =

iω

2mc
L∧n . ek,α =

iω

2mc
L.(ek,α∧

n)

where we’ve used k.(rp − pr) = −k∧(r∧p) = −k∧L, L being the orbital angular
momentum operator. Note that (ek,α∧n) = ek,other α This term looks similar to the
‘component of electric dipole’ operator derived previously, iωr . ek,α, with operator
er (magnitude of order ea0) replaced by magnetic dipole operator eL/2mc (mag-
nitude of order eh̄/2mc, the Bohr magneton, times an angular momentum quantum
number), and ek,α (chosen to specify the direction of A and hence E) replaced by
the polarization vector at right angles, in the B direction; i.e. this term couples the
electromagnetic B field to the magnetic moment of the electric current associated
with orbital motion in the atomic system, much like a current loop aerial (classically,
the electric dipole energy is E.d while the magnetic dipole energy is B.µ ).

The non-relativistic expression we used for the current density, v, neglects electron
spin angular momentum s, and a more detailed treatment gives L → L + 2s. Thus
the transition rate for the magnetic dipole radiation is the same as for the electric
dipole, but with electric dipole moment replaced by magnetic dipole moment: er →
e(L + 2s)/2mc.
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3.6.2 Electric quadrupole and magnetic dipole selection rules

The selection rules for these types of transition – which evidently exclude each other
at this level of approximation – are :

Electric quadrupole : JY = (JX ± 2) or JX (J = 0→| J = 0)
no parity change;
and for LS coupling also
no orbital AM change, no spin change.

Magnetic dipole (incl. spin) : JY = JX − 1, JX , JX + 1
no parity change;
and for LS coupling: no spin change, so orbital AM change, only J may (and must)
change, representing fine structure transitions in a single term.
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4 Radiative Transfer

This section
(a) Introduces specific intensity as a full classical description of radiation, and its
properties

(b) relates the emission coefficient and opacity – required to derive the specific inten-
sity – to the transition rate derived previously

(c) describes line profiles

4.1 Specific intensity and the equation of radiative transfer

Specific Intensity is the nearly complete classical description of the radiation field
(it misses polarization, which requires another three closely related distributions –
the other Stokes parameters, and it doesn’t describe the fluctuation spectrum). It
is the “energy per everything” of the radiation field at a given point and in a given
direction.

In order to measure it, one therefore requires a device that:
1. presents a given area
2. chooses a particular direction and defines a solid angle in that direction
3. limits the radiation accepted to a given frequency range
4. allows radiation to pass for a given time
5. measures the energy (or counts the photons) in such a measurement.

Such a device could be called a specific intensitometer. It is in fact an astronomical
telescope (of given aperture, equipped with sky aperture in the focal plane, filter,
shutter and photometer).

Specific intensity and photon occupancy Iν is related to Nk,α in a straightfor-
ward manner. The energy flux is IνdΩ dν and this is equal to the number of photon
states per unit volume in d3k (= k2dkdΩ/(2π)3) times hν times c times occupancy
of these photon states (NB k = 2πν/c), i.e.

IνdΩ dν = (k2dkdΩ/(2π)3)× hνc× (Nk,1 +Nk,2).

Hence (supposing that the radiation is unpolarized: Nk,1 = Nk,2)

Iν = (2hν3/c2)Nk,α

where the factor 2 is because both polarizations are assumed equally populated.

Radiative transfer Consider for concreteness the transfer of radiation due to a
particular bound/bound transition (l → u, say, from lower to upper) of randomly
oriented atoms. The number of absorbers in the elemental volume shown below is
nldl and the number of emitters is nudl. The photon occupancy is Nk,α. The number
of ‘up’ transitions per second due to photons in the beam dΩ is

nldl wabs(dΩ/4π) = nldl wsponNk,α(dΩ/4π)

20



while the number per second of ‘down’ transitions is

nudl wspon(Nk,α + 1)(dΩ/4π).

(IνdΩ/hν) photons arrive at the volume per second, (nl − nu) dl wsponNk,α(dΩ/4π)
are removed and nu dl wspon(dΩ/4π) are added – all in the beam dΩ.

area

I

dl

I  + dIν ν νΩd
solid angle

unit

Before continuing, we must allow for the fact that absorbtion can occur at a range
of frequencies near νY X , due to e.g. Doppler shifts from thermal motion. The total
absorbtion rate is now spread over frequency proportional to φν and

∫

φνdν = 1.

Then the change in flux at a given frequency as the beam passes through the volume
can be written

dIνdΩ/hν = [−(nl − nu)dl Nk,αwspon(dΩ/4π) + nudl wspon(dΩ/4π)]φν

or by substituting Iν = (2hν3/c2)Nk,α,

dIν
dl

= −(nl − nu)
wsponλ

2

8π
Iνφν + nu

wsponhν

4π
φν .

This can be written
dIν
dl

= −κνIν + Eν
which is known as the equation of radiative transfer. Here

κν = (nl − nu)wsponλ
2φν/8π

is the opacity (units m−1) and

Eν = nuwsponhνφν/4π

(units are W m−3 sr−1) is the emissivity. Each of those is calculable from local
conditions in the material.

The opacity can also be represented in terms of a cross section σν for absorption per
lower state

κν = nl σν(1− nu/nl).

This result follows from the definitions of opacity and cross section.

Correction for stimulated emission — The factor (nl − nu) introduced above is
very important as the correction for stimulated emission. As we saw in section 3.3
stimulated absorption and emission between two states proceeds at equal rates. The
net rate of absorption per unit volume is is wabs(nl − nu) = wabs ∗ nl(1− nu/nl).
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The factor (1 − nu/nl) can have a dominating effect. For example, if the states are
Boltzmann populated (thermodynamic equilibrium), and if (Rayleigh-Jeans limit)
hν << kT , the factor becomes hν/kT , a very small quantity. The states are so nearly
equally populated that almost as much stimulated emission as absorption occurs, and
the material appears almost transparent!

In certain cases, a non-thermal effect can tip the balance, and nu > nl in which
case the opacity is negative and the specific intensity grows! This is maser emission
(Microwave – it usually is – Amplification by Stimulated Emission of Radiation).

Modification for multiple states per level. Often one requires the emissivity
and opacity for transitions between two energy levels L and U – each level containing
several (gL and gU) states u and l respectively. The rate wul

spon is found for each
possible pair of states in upper and lower levels, and the individual opacities and
emissivities are added to give the totals denoted by the superscripts LU and UL:

κLUν =

(

∑

l

nl

∑

u

wul
spon −

∑

u

nu

∑

l

wul
spon

)

(λ2/8π) φν

EνUL =
∑

u

nu

∑

l

wul
spon (hν/4π) φν

If the individual states in a level are equally populated (e.g. by collisions) then we
can use nu = NU/gU and nl = NL/gL, whence

κLUν = (NL/gL −NU/gU) S (λ2/8π) φν

EνUL = (NU/gU) S (hν/4π) φν

where S =
∑

l

∑

u w
ul
spon. In this case, the modification is to use the original number

densities per state, and change wspon to S.

4.2 Optical depth and a solution to the equation of radiative

transfer

Before considering the detailed behaviour of specific intensity, note that in empty
space opacity and emissivity are zero. As a consequence, dIν/dl is zero, therefore and
specific intensity is constant along a line of sight (or ray) in empty space.

This constancy is the crux of observational astronomy! The source imprints on Iν its
properties, via emissivity and opacity. The the radiation travels through empty space
carrying this fixed value of Iν , which is measured on earth with a telescope. From
this the properties of the source can be unravelled. We shall see how this is done.

Define optical depth τν by dτν = κν dl to get

dIν
dτν

+ Iν =
Eν
κν

= Sν

where the latter equality defines the source function Sν .
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If κν , Sν are independent of position, the equation integrates to

Iν = Iν(0)e
−τν + Sν(1− e−τν ).

If there is no background radiation, then

Iν = Sν(1− e−τν )

and two extreme cases can be seen.

(1) τν << 1 — optically thin case :
expand exp(−τν) to two terms and get

Iν = Sντν = Eνl

(2) τν >> 1 — optically thick case :
exp(−τν)→ 0 and

Iν = Sν = Eν/κν = Eν × (mean free path)

4.3 Line profiles

The transitions u → l appear to involve exact energy differences. However, the
perturbation causing the transition spoils this. The uncertainty principle can be
stated in terms of energy and time as

∆E t ≥ h̄

where t is the time available to measure the energy, and ∆E is the uncertainty in
the measurement. Since t ≃ 1/wspon, the energy uncertainty is h̄wspon, giving a finite
width to the line resulting from the transition equal in frequency to wspon. This is
very narrow, but becomes significant as the ‘damping wings’ in very strong lines. The
profile of such a line is the Lorentz profile, proportional to 1/[(wspon/2)

2+(ν− νul)2].
An effect normally much greater, at least in emission lines, is Doppler, or thermal,
broadening. Each atomic system in a source in which kinetic energy is in thermal
equilibrium at temperature T is moving with a velocity associated with the energy
distribution. In one dimension (along the line of sight) the velocities are distributed
as exp(−E/kT ) = exp(−v2/(2kT/m)). The 1/e velocity of this distribution is

√
2viso

where viso =
√

kT/m. The frequency of the line is altered by δν/ν = v/c, and the

line has a Gaussian profile with 1/e frequency width
√
2viso/λ.

To express this frequency spread we modify the emissivity and opacity coefficients
by multiplying each by a normalized profile (or frequency probability distribution).
Put Eν = Eulφν and κν = κluφ̃ν with φν , φ̃ν each satisfying

∫

φνdν = 1. Then
each, integrated over the frequency range, gives the value consistent with the total
transition rate.

In the example of Doppler broadening the expression for φν is

φν =
1√
πb
e(ν−ν0)2/b2 , where b =

√
2viso/λ.
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b is called the Doppler broadening parameter. Note that the peak value of φν is
1/(
√
πb), expressing the approximate truth that since area equals unity by normal-

ization, height = 1/width.

In the frequently met case that the emissivity and the opacity have the same origin,
the source function is independent of the profile shape since it is the ratio Eν/κν . This
will occur for instance if the emission and absorption processes are dominated by the
same Doppler broadening, or generally are part of the same process.

For example, consider the emission line due to the dipole transition from rotational
state J = 1 to J = 0 of the CO molecule. Clouds with small optical depths at the
centre of the line will be observed to have the Doppler broadening profile. However,
when the optical depth at the centre of the line approaches and exceeds one, the
optically thick solution applies and the specific intensity there cannot exceed the (at
most slowly varying in frequency) source function. As the column density of the cloud
is increased, more of the line reaches this limit, and the specific intensity of the line
doesn’t become any higher and flattens at the value of the source function.

If the levels in the molecule are determined entirely by collisions (from molecular
hydrogen) in a gas which is thermalized, then the level population will be given by
the Boltzmann distribution, and the ratio Eν/κν = Sν = Bν(T ). The profile will
be a Gaussian profile chopped off at the black body specific intensity at the kinetic
temperature of the cloud (see figure).

Iν

ν0 ν →

Black Body
(((((((((((((((((((((((((((((((((((

((((((((((
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5 Collisions

This section
(a) describes cross section

(b) derives reciprocity between collisions causing upward and downward transitions

(c) defines critical density for a pair of levels

Flux F m−2 s−1

N Detections s−1

s
-
-A

A
A
A
A
A
A
AU

��������*

-
-

5.1 Cross section and collision rate

The cross section for a process is defined above. The rate of detection of the process
occurring, N s−1, is proportional to the flux F . The constant of proportionality, σ,
has dimensions m2 and is called the cross-section.

In Maxwellian distributions, collisions between species ‘1’ and ‘2’ proceed at a rate

n1n2〈σv〉 m−3 s−1

where n1, n2 are particle number densities (m−3) and 〈σv〉 is the Maxwell average of
the product σv. (see appendix).

This also leads gives the definition ofmean free path (the mean distance travelled by
particle ‘2’ before “hitting” a particle ‘1’ — a “hit” is specified as an elastic collision,
an excitation, a reaction or whatever, and the cross section σ for that process can be
calculated or measured)

MFP =
1

n1σ
.

The collision time tcoll is the mean time for such a hit, and is evidently

tcoll =
1

n1〈σv〉
.
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5.2 Critical density

A useful concept in interpreting level populations is critical density, defined in a
two-level system:

Eu

El

n〈σv〉lu

6

n〈σv〉ul

?

Aul

?

The radiation field is presumed to be negligible, and collisions cause up and down
transitions. The particles colliding with the 2-level system have number density n.
In statistical equilibrium (rate of ups equals rate of downs in an ensemble of such
systems)

nl n〈σv〉lu = nu(n〈σv〉ul + glwspon).

In the case where n is extremely large, we (a) reach the thermodynamic equilibrium
rate, and (b)

nu

nl
=
〈σv〉lu
〈σv〉ul

Hence, applying the Boltzmann distribution nu/gu = exp(−∆E/kT ), we get a very
important reciprocity

〈σv〉lu = (gu/gl)〈σv〉ule−∆E/kT .

Now rearranging the original equation for nu and nl, using the reciprocity relation
between σlu and σul, and defining

ncrit = glwspon/〈σv〉ul,

we get
nu

nl
=

(gu/gl)e
−x

1 + ncrit/n
, x =

Eu − El

kT
.

There are two limiting cases.

1. When n ≫ ncrit the denominator is nearly unity, and the levels are Boltzmann
populated. The emissivity is then independent of collider density n and is given by

Eν =
hν

4π
nuglwsponφν
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where
nu = ntotalgue

−Eu/kT/Q(T )

and Q(T ) =
∑

gne
−En/kT is the partition function. In the thermodynamic equilibrium

case, other things being equal, the emissivity is proportional to density.

2. When n≪ ncrit the downward collision rate is dwarfed by radiative transitions, and
rate of collisional transitions upward equals rate of radiative transitions downward:

nu

nl
=
(

n

ncrit

)(

nu

nl

)

Boltzmann

.

The emissivity is independent of Aul but depends on the collision rate 〈σv〉ul and is

Eν =
hν

4π
nnl

gu
gl
〈σv〉ul e−xφν ,

proportional to density squared.
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