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Radiation and Matter
Mathematical Appendix (a non-examinable addition to the notes)

Vector Identities

Stokes theorem
∫

area
∇∧F . dA =

∮

edge
F . dl

Gauss’ divergence theorem
∫

volume
∇. F dV =

∫

area
F . dA

Identities
∇∧∇χ = 0, any χ(r)

∇. ∇∧X = 0, any X(r)

∇∧∇∧X = ∇∇.X−∇2X, any X(r)

∇ . (X∧Y) = Y . ∇∧X−X . ∇∧Y, any X(r),Y(r)

∇(X .Y) = X∧∇∧Y +Y∧∇∧X+X .∇Y +Y .∇X

Vector derivatives of waves (note: f ′(x) ≡ df/dx)

(∂/∂t)[t − n.r/c] = 1 so ∂f/∂t = f ′

(∂/∂x)[−n.r/c] = −nx/c, so ∂f/∂x = (−nx/c) f
′ and also for y, z.

Hence

∇f(t− n.r/c) = ex∂f/∂x + ey∂f/∂y + ez∂f/∂z

= ex (−nx/c) f
′ + ey (−ny/c) f

′ + ez (−nz/c) f
′

= −(n/c) f ′

= −(n/c) (∂f/∂t)

By similar arguments

∇. F(t− n.r/c) =
∑

i=x,y,z

(∂/∂xi)Fi = −(n/c) . (∂F /∂t)

and

[∇∧F(t− n.r/c)]x = (∂/∂y)Fz − (∂/∂z)Fy

= (−ny/c) F
′
z − (−nz/c) F

′
y

= [(−n/c)∧F
′]x = [(−n/c)∧(∂F /∂t)]x

and also for y, z, i.e.

∇∧F(t− n.r/c) = −(n/c)∧(∂F /∂t)
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Poynting vector

Manipulate Maxwell’s equations to get

E .∇∧B−B .∇∧E = µ0

(

j .E+
∂

∂t

(

ǫ0
2
E2 +

1

2µ0
B2

))

The LHS is −∇ . (E∧B). Integrate over a given volume :

− 1

µ0

∫

∇ . (E∧B) dV =

(

∫

j .E dV +
∂

∂t

∫

(

ǫ0
2
E2 +

1

2µ0
B2

)

dV

)

On the RHS the first integral is the rate at which the current does work, while the
second integral is the rate of increase of energy stored in the fields. Therefore the
LHS is the energy entering the system. By the divergence (Gauss’) theorem, the
integral on the LHS is equal to the outward-pointing surface integral of −E∧B/µ0,
which implies that the energy flux is E∧B/µ0. (QED - but only generally true in
wave zone!)

Solution of 2φ(r, t) = −ρ(r, t)/ǫ0
A. First solve ∇2φ = −ρ(r)/ǫ0 :

General result for two scalar fields φ, ψ (Green’s Theorem) :
∫

(φ∇ψ − ψ∇φ) . dA =
∫

∇ . (φ∇ψ − ψ∇φ) dV =
∫

(φ∇2ψ − ψ∇2φ) dV

where dA is an element of area.

Choose φ, ψ so that each drops off sufficiently rapidly that the area integral is zero
when the surface is at infinity. In that case, the left-hand side of these equalities is
zero.

Choose in particular ψ = 1/r. Note that

∇2
(

1

r

)

≡ 1

r2
∂

∂r

(

r2
∂

∂r

(

1

r

)

)

= 0

except at r = 0.

Check whether there is a spike in ∇2(1/r) at r = 0 by integrating over volume :

∫

∇2
(

1

r

)

dV =
∫

∇
(

1

r

)

. dA =
∫
(

− 1

r2

)

r2 dΩ = −4π.

There is a spike. Thus

∇2
(

1

r

)

= −4πδ(r)

Now insert this in the RHS of Greens’s theorem with the surface integral zero :

∫
(

φ[−4πδ(r)]− 1

r
∇2φ

)

dV = 0,

i.e.

φ(0) = − 1

4π

∫ ∇2φ

r
dV =

1

4πǫ0

∫

ρ(r′′)

r′′
dV ′′.
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Now shift the origin of coordinates by r (r′ = r′′ + r) to get

φ(r) =
1

4πǫ0

∫

ρ(r′)

|r− r′| dV
′

(QED)

B. Now do the time-dependent case : ∇2φ− c−2φ̈ = −ρ(r, t)/ǫ0
First of all, Fourier transform the equation w.r.t. time.

∂2

∂t2
(...) → −ω2(...).

The equation with Fourier transformed quantities indicated by overbars becomes, on
putting ω/c = k,

∇2φ̄+ k2φ̄ = −ρ̄(r, ω)/ǫ0
Instead of 1/r use e±ikr/r in an analysis similar to case A. Check that

(∇2 + k2)
e±ikr

r
= −4πδ(r).

Now note that in Green’s theorem, since k is constant, we can replace
∫

(φ∇2ψ −
ψ∇2φ) dV by

∫

(

φ(∇2 + k2)ψ − ψ(∇2 + k2)φ
)

dV.

Now we we put ψ = e±ikr/r (and φ→ φ̄) to get

φ̄(0, ω) = − 1

4π

∫

e±ikr(∇2 + k2)φ̄

r
dV =

1

4πǫ0

∫

e±ikrρ̄(r′′, ω)

r′′
dV ′′.

Now Fourier transform back, and remember that the transform of

ρ̄(r′′, ω)e±iωr/c

is ρ(r′′, t± r/c), and then – as before – shift origin to get

φ(r) =
1

4πǫ0

∫

ρ(r′, t± |r′ − r|/c)
|r− r′| dV ′

(QED)
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Field energy as vector potential wave amplitudes (section 1.4)

In a large empty cubical box of size L (V = L3) (and in a gauge in which ∇.A =
0, φ = 0, so that E = −Ȧ, B = −∇∧A) the vector potential can be written, by
Fourier’s theorem, as

A(r, t) =
∑

k,α

√

h̄

2ǫ0ωV
ek,α

(

ak,α(t)e
ik.r + a∗

k,α(t)e
−ik.r

)

,

where k = (2π/L)(nx, ny, nz) and the n’s are positive or negative integers, and the
complex conjugate term has been introduced to ensure thatA is a real function. Since
A obeys the wave equation in empty space, ak,α(t) is proportional to exp(−iωt), ω =
|k|c. The energy in the box is

H =
∫

box

1

2
(ǫ0E

2 +B2/µ0) dV.

The squared fields can be expressed as double sums: for example,

E2 = − h̄

2ǫ0V

∑

k,α

∑

k′,α′

√
ωω′(ek,α.ek′,α′)(ak,αe

ik.r − a∗
k,αe

−ik.r)(ak′,α′eik
′.r − a∗

k′,α′e−ik′.r)

and the magnetic term (remember c2 = 1/µ0ǫ0 and inside the sum ∇∧ → ±ik∧)
becomes

B2 = − h̄

2ǫ0V

∑

k,α

∑

k′,α′

√
ωω′((ek,α ∧k).(ek′,α′ ∧k

′))(ak,αe
ik.r−a∗

k,αe
−ik.r)(ak′,α′eik

′.r−a∗
k′,α′e−ik′.r)

All the terms in the sums representing the E and B fields contain a factor e±ik.r,
the only factor depending on r. The integral involves these terms only, and since the
fields are squared the terms appear only as products of pairs. The integral can be
vastly simplified by noting that the integral of such pairs is

∫

box
ei(k

′+k′′).r dV = V δk′,−k′′

where δk′,−k′′ is unity if k′ = −k′′, and zero otherwise.

Thus in the energy integral it is clear that all the terms will vanish on integration
except those that arise by multiplying terms of a given k and their complex conjugates,
plus terms (e.g. ak,αa

∗
−k,α) that cancel between the E2 and the B2 sums. The vector

dot products in the sums ensure that non-zero terms have α′ = α. The upshot is

H =
1

2

∑

k,α

h̄ω(ak,αa
∗
k,α + a∗

k,αak,α).
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Gauge invariance and electromagnetism (without Lagrangians)

ih̄

(

∂

∂t
+ f

)

ψ = H(∇+ F)ψ

with
f → f ′ = f − iα̇, F → F′ = F− i∇α

is invariant to the gauge transformation ψ → eiαψ (NB local gauge invariance is
implied by relativity, since the phase (‘gauge’) change α cannot be propagated at
infinite speed, and so must be different in different places at different moments). The
extra necesssary fields f,F turn out to be the EM potentials within a factor. For the
fields M = ∇∧F and N = Ḟ−∇f are gauge invariant, and

∇∧M = 0, Ṁ = ∇∧N

are the first two Maxwell equations. To check that this really is so, and to set the
constant factors,we use a semi-classical argument to derive the Lorentz force (only
really done properly in Lagrangian formalism).

The Schrödinger equation of a free particle (with these gauge fields implied) is

ih̄
∂ψ

∂t
=

1

2m
(p+ h̄F/i)2 − ih̄f

and the equation can then be written (assuming (h̄F)2 is small enough to ignore)

ih̄
∂ψ

∂t
=

1

2m
p2 + V

where V , the effective potential energy, is ih̄(v.F + f). Then the classical equation
of motion would be

dp

dt
= −∇V.

Note that v is the trajectory (yet to be found) of the particle, and so

dA

dt
=
∂A

∂t
+ v.∇A

and using the identity for ∇(v.A), – don’t differentiate v, as it is a trajectory, not a
field variable! – we get

d

dt
(p− q{ih̄/q}F) = q({−ih̄/q}N+ v∧{ih̄/q}M).

If, putting ih̄/q = K, we write B = KM, E = −KN, A = KF, φ = −Kf , then
the equation becomes

d

dt
(p− qA) = q(E+ v∧B),

which is the Lorentz equation, and in addition we have learned that the momentum
in an EM field is not p, but p− qA. Finally, the gauge invariant S. equation is (with
p ≡ (h̄/i)∇)

(

ih̄
∂

∂t
− qφ

)

ψ = H(p− qA)ψ ≃ (p− qA)2

2m
ψ.
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Maxwell averaged cross section

The cross section for a beam of particles of type 1, travelling with velocity v, colliding
with a static particle of type 2 (‘colliding with’ can mean reacting with or being
deflected by) is σ = σ(v). In a gas at temperature T consisting of n1 m−3 particles
of type 1 and n2 m−3 particles of type 2, the rate of collision is

n1n2〈σv〉 m−3 s−1

This is proven in two steps. First, choose a coordinate frame moving with velocity
v2. Consider the flux of particles 1 on a particle 2 which is at rest in this frame. This
will be given by σ times the flux of particles 1, i.e. n1 times the relative velocity
v = |v1 − v2|, integrated over the Maxwell velocity distribution of particles 1. This
distribution is

f(v1;m1) d
3v1 =

(

m1

2πkT

)3/2

e−m1v21/2kT d3v1.

The result is
n1

∫

v1

σvf(v1;m1) d
3v1.

Now, in unit volume and in a small velocity range (nearly at rest in the moving
frame) there are n2f(v2;m2) d

3v2 particles 2. Thus the number of collisions m−3

s−1of particles 1 with particles 2 is

n1n2

∫

v1

∫

v2

σvf(v1;m1) f(v2;m2) d
3v1 d

3v2.

Now change variables from v1,v2 to v = v1−v2, V = (m1v1+m2v2)/(m1+m2) (i.e.
to relative and centre-of-mass velocities). Note thatm1m2 = µM whereM = m1+m2

and reduced mass µ = m1m2/M , and m1v
2
1+m2v

2
2 = µv2+MV2. Also (the Jacobian

has magnitude unity!) d3v1 d
3v2 = d3v d3V. Substituting in the integrals, they

become
n1n2

∫

v

∫

V

σvf(v;µ) f(V;M) d3v d3V.

The integrals separate, that over V integrating to unity (normalized velocity distri-
bution), while that over v is the Maxwell average of σv for a particle of mass µ. this
average is the one-dimensional integral (express d3v in polar coordinates v2dv dΩ):

〈σv〉 = 4π
(

m1

2πkT

)3/2 ∫ ∞

0
σv3e−µv2/2kT dv.

[Note:
1. the collision rate for a binary process – 2 particles – is proportional to density
squared (n1n2 = x1x2n

2 where x1, x2 are abundances). You can guess that the triple
collision rate will be proportional to density cubed.

2. The coefficient 〈σv〉 is a function of temperature. If σv ∝ Eα ∝ v2α then inspection
of the integral shows that 〈σv〉 ∝ T α. ]
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Spin

Rules of angular momentum:

[jx, jy] = ih̄jz, (cyclic)

hence
[j2, jz] = 0 (for any one cpt.)

and the complete set of states are specified by the eigenvalues of these two operators.
Invent j± = jx±ijy , and note (j+)

† = j− and j2 = j±j∓+j
2
z∓jz . Hence it is found that

there are 2j+1 states, with z-component eigenvalues m = −j,−(j − 1), ... , (j − 1), j
in units of h̄; the eigenvalue of squared AM is j(j + 1) in these units; and

j±|j, m〉 =
√

(j ∓m)(j ±m+ 1)|j, m± 1〉.

The wave functions corresponding to the states with 2j even are 〈x|j,m〉 = Yjm(θ, φ),
the spherical harmonics. for 2j odd there are no such wave functions (we use 2-
component spinors).

Adding two AM operators (a system with two angular momenta), J = j(1)+j(2), gives
complete sets of operators j(1)2, j(2)2, J2, Jz, or alternatively j(1)2, j(2)2, j(1)z, j(2)z
(check that in each group the operators commute). Since each is complete, the eigen-
states of one group must be linear combinations of the eigenstates in the other. The
coefficients are called Clebsch-Gordan coefficients. They can be found using the lad-
der operators j±.

We apply this to two spin 1
2
particles. The spin operator has two eigenvalues, ±1/2,

and the two eigenstates can be written |±〉. The commuting operators (neglect the
s(1)2, s(2)2 operators, since their eigenvalues are always the same, 3/4) are sz(1), sz(2)
or s2, sz, where s = s(1) + s(2). The corresponding eigenstates are then either
|+〉|+〉, |+〉|−〉, |−〉|+〉, |−〉|−〉 or alternatively |S,MS〉. We relate these alternative
descriptions by noting that the S = 1, MS = 1 state must be both spins ‘up’, i.e.
|1, 1〉 = |+〉|+〉.
To get the |1, 0〉 state, apply S− = s−(1) + s−(2) to the above equation and apply
the formula for the action of j± (using S− on the left and s−(1)+ s−(2) on the right):

|1, 0〉 = 1√
2
(|+−〉+ | −+〉) ,

and again to get |1, −1〉:
|1, −1〉 = | − −〉.

The remaining state, |0, 0〉, must be orthogonal to all of these, and in particular to
|1, 0〉, from which we infer

|0, 0〉 = 1√
2
(|+−〉 − | −+〉)

(we could have derived this also by demanding S±|0, 0〉 = 0).
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Matrix elements of selectron between S = 1,MS and S = 0,MS = 0

The method applies to the spins of the electron and nucleus in a hydrogen atom. The
spins combine as above, but transitions are caused by an operator on the electron
state only (because the Bohr magneton for baryons is so small). The squared matrix
element required is |〈Y |s|X〉|2 = |sY X |2 given by

|sY X |2 = |(sx)Y X |2 + |(sy)Y X |2 + |(sz)Y X |2 =
(

|(s+)Y X |2 + |(s−)Y X |2
)

/2 + |(sz)Y X |2.

Take |XM〉 to be one of the S = 1 states, and |Y 〉 to be the S = 0, M = 0 state,
also expressible as

|Y 〉 = |0, 0〉 = 1

2
(|+〉e|−〉p − |−〉e|+〉p)

The s operator is the electron spin operator, and doesn’t affect the proton spin. Check
that s+|−〉e = |+〉e, s−|+〉e = |−〉e, sz|±〉e = ±(1/2)|±〉e (and remember in what
follows that the first state vector in the product is the electron one).

For |XM〉 representing the states with S = 1 and MS = 1, 0,−1 we get

M |XM〉 (s+)|XM〉 (s−)|XM〉 (sz)|XM〉 (s+)Y X (s−)Y X (sz)Y X

1 |+〉|+〉 0 |−〉|+〉 1

2
|+〉|+〉 0 − 1√

2
0

0 1√
2
(|+〉|−〉+ |−〉|+〉) 1√

2
|+〉|+〉 1√

2
|−〉|−〉 1

2
√

2
(|+〉|−〉 − |−〉|+〉) 0 0 1

2

−1 |−〉|−〉 |+〉|−〉 0 − 1

2
|−〉|−〉 1√

2
0 0

The result |sY X |2 is then 1/4, the same for each value of M , as it should be for an
angle-averaged quantity.

This value, in physical units then gives the term for magnetic dipole radiation

|2sY X |2 = h̄2.
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