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Solution set 8

(1) For the single-particle states,
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E=n? = en?.

Because this well is not centred on zero, the single-particle eigenstates are all just
proportional to sin(nmz/2a) = |n). If we write the two-particle states as |ny,ns2), the
ground state is |1,1) (E = 2¢). The first excited states are |2,1) and [1,2) (E = Je).
The second excited state is |2,2) (E = 8¢). The overall wavefunction needs to be
symmetric for bosons, which |1,1) and |2,2) are already. These therefore pair with a
symmetric spin wavefunction, which is always possible, whether or not the bosons have
spin zero. For the first excited state, both symmetric and antisymmetric combinations
are possible: (]2,1)4|1,2))/v/2; these would need to pair with spin wavefunctions that
are respectively symmetric and antisymmetric. If s > 0, both are possible; if s = 0,
only the symmetric space state is allowed.

The (normalized) ground-state wavefunction is
Y(x1,22) = |1,1) = (1/a) sin(rzy /2a) sin(rzs [2a)

According to first-order perturbation theory, the change in the ground-state energy
caused by H' is just 6E = (H'), where the expectation value uses the unperturbed
eigenfunctions:

JE = //;z}(xl,@)* H'Y (21, w2) da das.

Now, H' contains é(z1 — x2), and [[ f(z1,22)6(z1 — x2) dzy dze = [ f(z1,21) dzy, for

any function f. Therefore,

2a 1
0E = —2aVj / [v(z, )| de = (—Q/G)VQ/ sin'(7z/2a) dx = —4VO/ sin' 7y dy.
0 0

The sin* 7y looks nasty, but write it as sin® 7y xsin® 7y and use sin® 7y = (1—cos 27y) /2.

The integral then gives 3/8, so §E = —3V,/2.



(2)

(a) The allowed values of j range between sy + s; and |s1 — s3| in integral steps.
s1 = 1/2 and s3 = 1/2 therefore only permit the values 7 = 1 and 0. j = 1 allows
m = —1,0,1; 5 =0 is m = 0 only, so there are only three allowed values of m.

(b) Symmetric (‘triplet’) states are wu(1)u(2), d(1)d(2) and [u(1)d(2) +
d(1)u(2)]/v2. The antisymmetric (‘singlet’) state is [u(1)d(2) — d(1)u(2)]/v/2. The
V/2 is there to keep the states normalized.

(c) The m = 1 state requires both particles to be spin up (so it must be j = 1
also). We therefore need the symmetric state u(1)u(2). The j = 0 state is antisymmetric
(although a proper proof of this requires Q3).

(d) The overall wavefunction of the 2-particle system must be antisymmetric
under exchange of spin and space labels (these are fermions). If the wavefunction

factorizes into ¢ = wu(space) X v(spin), then the symmetries of u & v must be
opposite. Therefore, if j = 0 (antisymmetric), v must be symmetric, and vice-versa.
A symmetric ground state is possible: u(1,2) = wuy(1)uy(2), but an antisymmetric

space state only allows one particle in the lowest single-particle state: wu(1,2) =
[u1(1)ua(2) — uz(1)uq(2)]/v/2. The single-particle energies are E = p?/2m = (hk)?/2m,
where k = /L for the u; state and k = 27/ L for the u, state. The symmetric ground-
state energy is thus E = 2 x (hn/L)?/2m, whereas the antisymmetric ground-state
energy is a factor 5/2 larger.

(3) The commutation relations are [Jy, Jy| = ihJ,, [J,, Jz] = thJy, and [Jy, J.] = thJ,.

(a) First define the eigenstates ¢p,: J,tbm = mhyy,. To see if Jiy,, is an
eigenstate of .J,, we need to look at J,Jy,,, which is equal to JyJ, ¥ — [Jx, J.|t0m.
The required commutator is [Jx,J,] = [Js, J:] £ i[Jy, J;], from the definition of J.
From the basic commutators given at the start, this is [J1,J,] = h(—iJ, £ —J;) =
— + hJy (if treating + like a number is confusing, do this separately for J; and .J_).
Going back to J,Jit,,, we can now write this as Jy.J, ¥, + +£hJ11,,. The first term
is just Jymhpy,, so this is (m 4+ 1)h(J1¢m). Thus, Jyi, is an eigenstate of .J,, with
eigenvalue (m + 1)h. This establishes the raising and lowering property of J.

(b) Two electrons would have a total spin of s = 1 or 0, by the rule given in
question 1. Adding a third spin-half particle creates total s = 3/2 or 1/2 from the s = 1
two-particle state. The s = 0 two-particle state becomes s = 1/2 only on adding the
third particle, so total s = 3/2 or 1/2 are the only possibilities.

(¢c) The states with well-defined values of my, my and mgs for the z-spin
components of all particles are the ‘uncoupled basis’. Where all particles are ‘spin
up’, this state may be written as | 111). This state is also the m = 3/2 state of total
s = 3/2 (there is no other way to get my +mso + m3 = 3/2 in the uncoupled basis). We
can therefore write |s = 3/2,m = 3/2) = | 111). To get from here to |s = 3/2,m = 1/2),
we need to apply J_ = s + 53 + S$® . In other words, the total lowering operator
is the sum of the lowering operator for each separate spin (reasonably enough); this



follows from the definition of J_ and .J, = 53(51) + 53(52) + 53(53) ete. Now, we need to use
the given normalization result. This says that

J_|s=3/2,m=3/2)=+/15/4—3/4h|s=3/2,m =1/2) =3 hl|s =3/2,m =1/2).

Notice that the total quantum number, j, is the same as the overall spin quantum
number, s, in this case. Therefore |s = 3/2,m = 1/2) = (1/V/3)J_|s = 3/2,m =
3/2). Using the given normalization result again for a single state, S_|1/2,1/2) =
\/3/441/4 h|1/2,—1/2). This establishes the required result.

(d) When adding two spins, we get total j = 1 or 0. The m = 1 state can only
arise in one way, so |7 = 1,m = 1) = | 11). To get to |5 = 1,m = 0), we need to use
J_|j=1,m =1) = 2|j = 1,m = 0), by the given normalization result. As before,
J_ 1s the sum of the two individual lowering operators, so
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To find |j = 0,m = 0), we must have a combination similar to |j = 1, m = 0), with one
spin up and one down (these are the only two ways to get m = 0). So, write

j=1Lm=0)=—=(|11)+]1).

7 =0,m=0)=al 1) +b]T]),

where ¢ and b are unknown constants. We know that this state cannot be raised or
lowered, unlike |7 = 1,m = 0), so the effect of Jy is zero. Consider the effect of

Ty =51 +8P on j=0,m =0): S| 1) = 11) and S| 1]) = 0, since the first
spin cannot be raised if it is already up. Similar reasoning applies for the effect of Sf),
leading to Jy4|j = 0,m = 0) = (a+ b)| 1) = 0. So, a = —b, and |[j = 0,m = 0) is

antisymmetric. Normalization gives a = 1/v/2, since

(j=0,m=0]j=0,m=0)=[al* (1| 11) + [BI*(1L [ T4) + ab* (1L | 11) + ba* (11| 1)

The first two brackets are 1, the latter two vanish, though orthonormality. The sum is
just |a|® + |b|* = 2|al?; this must be unity, through orthonormality for the bracket on
the lhs. Therefore, |a|? = 1/2, and we can choose the phase so that a is real.



