Quantum Mechanics 3 2001/2002

Solution set 5

(a) L=rap, so
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and the same for other components, cyclically permuting x,y, 2. The first commutator
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is just hard work:

L.L,

Now do the same for L,L, and take the difference.

(b) We need to consider L,Ly, which is LyL, — [Ly,L,]. The required
commutator is readily proved from the basic commutators: [Ly,L.] = FhLy. Thus,
L.Li|¢,m) = (L+L, + hL1)|¢,m). Since |¢/,m) is an eigenstate of L., this gives
L.Li|l,m) = (m £ 1)RLi|¢,m), so the state Ly |¢,m) is also an eigenstate of L — z,
but its eigenvalue is (m + 1)k — this is what we mean by raising or lowering.

(¢c) Ly = (L4 + L_)/2. If ¢ is the m eigenstate of L., L, produces a mixture

of the m — 1 and m + 1 states, which are orthogonal to the m state. Hence, (L;) = 0.
Similarly,
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The expectation of the first two terms vanishes, leaving (L2) = (LyL_ + L_Ly)/4.
Now, Ly L_ + L_Ly = 2(L2% + Lz) = 2(L? — L?), from the definition of Li. Hence,
(L2) = 2((L* — L2))/4 = K¢ 4+ 1) — m?)/2. The last step can also be argued by
symmetry: ((L? — L?)) = (L2) + <L§>, but we expect (L2) = <L§>



(d) ((§A)?) means ((A — (A))?), which is (A?) — (A)?. Here, ((6L,)*) = (L2%),

and similarly for L, (from the previous part). Again using the previous part, we get

(FLHEL) = it 4 1) — 2P

Since the maximum values of m is £, this is ((§L,)2)((6L,)?) > h*¢*/4.
Now consider the general uncertainty relation:
((6A)*)((6B)*) = —([A, B])* /4.

we have ([L., L,]) = ih{L.) = imh?, so the rhs of the uncertainty relation is h*m?/4.
However, we already proved that the lhs was > h%¢* /4, and £ > m, so this is consistent
with the uncertainty relation (which becomes an equality when m = /).

(2) Using L? = Li + L; + Lg, write out the commutator with total angular momentum

squared:
L, Ls] = L5 Lo] + [Ly, Le] + [, Lo
= L}, L] + [L2, L]
=L,L,L,—L,L,Ly+L.L.L,—L,L.L,
Now use the [L;,L,] = ithL, commutator to convert the triple terms to ‘sandwiches’

plus pairs: LyL,L, = L,yL,L, —1hL,L. etc. The sandwiches cancel in pairs, and the
four double terms combine to give zero. Once you’ve proved it for L,, the other two
follow just by symmetry — the choice of x axis is arbitrary.

(3) This mainly needs stamina in changing variables to spherical polars:

x = rsinfcosgo
y = rsinfsin ¢

z =rcosb.

Start with the chain rule for partial derivatives: the partial derivative with respect to
¢ is
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which gives L, = 3 35"

The same reasoning for 6 gives
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Together with the relation for %, we can eliminate %, which is what we need in order
to involve L, = —ih(y% — Za%). The following combination can be checked to work:

L,/ih = singﬁ% + cot 6 cosqb%.



The same approach gives the equation for L,:
0 0
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(remember cot = 1/tan).

The expression for L? involves keeping track of the cross terms in which the
angular derivatives in L, and L, differentiate the operators themselves. This gives an
extra cot 9% term, so
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Finally, V? in spherical polars is
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so we can see that the angular terms are proportional to LZ.



