Quantum Mechanics 3 2001/2002

Solution set 4

(1) The given states are eigenstates with given energy. This means they must satisfy
the eigen-equation

Hup(z) = Epun(2),

where H is the Hamiltonian operator. This is just a short way of writing the time-
independent Schrodinger equation. Sets of eigenstates are complete: this term means
that we can expand any general wavefunction:
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Using the expansion of 1,
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Now put the expansions for ¥y and Ht in the integral, using a different dummy index
for each sum, to avoid confusion:
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Using orthonormality of the u’s, the last integral is just d;;, so that
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In other words, the expectation of H is just the sum of the eigenvalues, weighted by
the probability of being in each state, |a;|?>. Since E; > Eq, by definition of the ground
state as the state of lowest energy, we see that

<1/’|H|¢> > Z |ai|2 Ey = Ey,

where the last step follows becuase the probabilities add up to unity: >, ]a;[* =1

(2) The Fourier transform is a specific example of the expansion in eigenstates. The
state u = exp(tkz) is an eigenstate of momentum:

penle) = L) = k().

and the momentum eigenvalue is hk, as expected. Thus, when we write
o /@/:(k) exp(tkz) dk,

this is just like writing ¢» = > . a;u;(z). The Fourier coefficients ;/;(k) are analogous
to a;. Therefore, just as |a;|* is the probability of being in the ith state, so [t (k)|? is

proportional to the probability of getting momentum hk.

The wavefunction is correctly normalized, so its Fourier transform is
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Putting p = hk gives the probability distribution of momentum, which is proportional
to |¢|*?. The mean value of momentum is clearly zero, because the distribution is

exp(ikz)dr =

symmetric, but the variance is

The integrand is thus just proportional to sin?(pa/h), which has an average value of
0.5. The integral diverges. The uncertainty principle is an inequality, and defines a
minimum uncertainty for a Gaussian wavefunction. In general, the uncertainty will be
larger than the minimal value, as in this example. If we take a different definition of
the spread in momentum (e.g. the range enclosing 50% of the values), then something
closer to dp ~ h/a will be found.



(3) Differentiate (O) = [¢*Ov¢ dV inside the integral to get two terms. Now use
Hy = zh;b and the complex conjugate relation (Hy)* = —ih;/}*, plus the Hermitian
property of H ([(HyY)*¢dV = [¢*H¢dV, where ¢ = Ot in this case). Remember
the meaning of the commutator symbol: [H,0] = HO — OH.

For the second part, use the general relation with O = z or O = p,. This just
requires the operator form of momentum and the ability to differentiate a product. For
example, (d/de)(z) = (2)(d/da) + , 50 (&/da®) (@) = ()(d [da*)b + (d]de )b +
(d/dx)y. Now use the fact that, in 1D,
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so [H,z] = —(h¥/m)(d/dz) = (h/i)ps/m (we have cancelled out a factor of 1) on either
[H,z] = —( p C

side, since this operator equation applies for any ).

The reasoning for [H,p,] is similar. Notice that it’s only the terms involving
derivatives that cause trouble: commutators like [V (z), z] always vanish.

The final Ehrenfest equations are very satisfying: classical mechanics is obeyed
by the average properties of quantum particles — which explains why we can get sensible
results on laboratory scales using classical laws.



