Quantum Mechanics 3 2001/2002

Solution set 2

(1)

(a) Stationary state means that the wavefunction factorizes: p(x,t) =
u(z)exp(—iEt/R). This is the simple time dependence for a state of definite energy.
Whenever you see just u(z), think of this as ¢(z,t = 0) — so that there will always be
an implicit factor exp(—:Et/h) for the time dependence.

The full Schrédinger equation is —(h*/2m)V?2 + Vb = ihdip/0t. Putting in the
stationary state expression converts the rhs to just Ev, giving the time-independent
Schrodinger equation. Notice that the full Schrodinger equation allows superposition of
solutions, but the time-independent form does not, because each state has a different
energy: each state solves a different time-independent equation.

(b) Therefore, when you see a superposition like [uq(z) + ug(x)]/v/2, this must be the
t = 0 form of the time-dependent superposition [t (z, 1)+ 1ty (z,1)]/v/2. At a later time,
the full expression for v is

¢ = [ur(z) exp(—iErt/h) + ua (@) exp(—iEat/h)]/ V2,
and it is crucial that the two energies are different. The complex conjugate is
v* = [uf(z) exp(+iEit/h) + uj(x) exp(+iEat /h)]/V2,
50
07 = [ua]? /24 Juz|? /2 + (ujuz/2) expli(Ey — E2)t/h] + (w13 /2) exp[—i( By — E»)t/h].
If u¥uy = |ugus| exp(ic), then
017 = [ua]?/2 + Jua|* /2 4 [uruz| cos[(Br — Ex)t/h + ).

In other words, the probability density oscillates back and forth. Quantum interference
changes the probability density as a function of time.



(2)

(a) The Schrodinger equation for this case is

2
(_h_ 8_; -|-mw2.1;2/2> v —EY =0

(b) If ¢ = Ae_‘“Q, then the first 2 derivatives are
' = 2azAer
" = —2@6_‘”2 + 4&2:1;2.46_‘”2.

The resulting Schrodinger equation must be true for all z, so the total z? coefficient in
the equation must be zero: —2h*a?/m 4+ mw?/2 = 0, so a = mw/2h. Similarly, the
constant term in the equation must vanish: h’a/m — E = 0, so E = hw/2 — which
proves the n = 0 case of E = (n + 1/2)hw.

(3)

(a) Parity: ¢(—z) = £¢(z) (can always assume definite parity for a symmetric
potential). Between the delta-potentials, V' = 0, so the allowed wavefunctions are
¥ o exp(+Bz), where 32 = —2mE/h%. here, we want a bound state, so E is negative
and 3 is a real number. The positive parity solution therefore is

Aehx < —a
=9 B(eP*+e %) —a<z<a

Ae=87 T >a
and for negative parity
AP r< —a
Yp=1{ B(?* —e™P%) —a<z<a
. x> a

(using the only 2 allowed waves to make combinations with the right symmetry). The
waves between the spikes are obviously cosh or sinh functions.

(b) As in the notes, integrate the Schrodinger equation across a delta function
of weight A to get Av' = (2mA/h? ). If you're worried about internal structure in the
well, remember k inside is o< v/V when V is large. The phase change across the well is
KL, which is x VVVIVL. If we keep VL fixed and let L — 0, this tend to zero. We

can treat ¢ as constant inside the well.

(¢) The boundary condition in (b) gives the same info at * = +a by symmetry.
Matching ¢ and writing down the discontinuity in ¢’ gives 2 equations which can be
divided to eliminate A and B. We get

{ fBtanh fa  (even parity)

2m|a|
—B= B3/ tanh Ba (odd parity)

R
Sketch the lhs and rhs of these expressions against 3. There is always an intersection
for the even case, but not for the odd case if 1/a > 2m|a|/R%.




