

Quantum Mechanics 3 2001/2002

Problem set 5

- (1) [Long question, 1999 resit paper]
- (a) Define the angular momentum operators L_x , L_y , L_z in terms of the position and momentum operators. Prove the following commutation result for these operators: $[L_x, L_y] = i\hbar L_z$.
- (b) Show that the operators $L_{\pm} = L_x \pm i L_y$ act as raising and lowering operators for the the z component of angular momentum, by first calculating the commutator $[L_z, L_{\pm}]$.
- (c) A system is in the state ψ , which is an eigenstate of the operators L^2 and L_z , with quantum numbers ℓ and m. Calculate the expectation values $\langle L_x \rangle$ and $\langle L_x^2 \rangle$ (hint: express L_x in terms of L_{\pm}).
- (d) Hence show that L_x and L_y satisfy a general form of the uncertainty principle: $\langle (\delta A)^2 \rangle \langle (\delta B)^2 \rangle \geq -\langle [A, B] \rangle^2 / 4$.
- (2) Using the commutator $[L_x, L_y] = i\hbar L_z$ and its cyclic variants, prove that total angular momentum squared and the individual components of angular momentum are compatible variables (i.e. $[L^2, L_x] = 0$ etc.).
- (3) Write down the definitions of the operators L_x , L_y and L_z in Cartesian coordinates. Show that, in spherical polars, the operators become

$$L_x/i\hbar = \sin\phi \frac{\partial}{\partial\theta} + \cot\theta \cos\phi \frac{\partial}{\partial\phi}$$
$$L_y/i\hbar = -\cos\phi \frac{\partial}{\partial\theta} + \cot\theta \sin\phi \frac{\partial}{\partial\phi}$$
$$L_z/i\hbar = -\frac{\partial}{\partial\phi}.$$

(remember $\cot = 1/\tan$).

Look up the full form of ∇^2 in your maths notes, and hence show that L^2 is proportional to the angular part of ∇^2 :

$$L^2\psi = -\hbar^2 r^2 \left[\nabla^2 \psi - \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) \right].$$