
f

g

x
x’

h(x)

h=f*g
*

Figure 6.6: Illustration of the convolution of two functions, viewed as the area of the overlap
resulting from a relative shift of x.

FOURIER ANALYSIS: LECTURE 9

6 Convolution

Convolution combines two (or more) functions in a way that is useful for describing physical sys-
tems. Convolution describes, for example, how optical systems respond to an image: it gives a
mathematical description of the process of blurring. We will also see how Fourier solutions to dif-
ferential equations can often be expressed as a convolution. The FT of the convolution is easy to
calculate, so Fourier methods are ideally suited for solving problems that involve convolution.

First, the definition. The convolution of two functions f(x) and g(x) is defined to be

f(x) ⇤ g(x) =
Z 1

�1
dx0 f(x0)g(x� x0) , (6.59)

The result is also a function of x, meaning that we get a di↵erent number for the convolution for
each possible x value. Note the positions of the dummy variable x0, especially that the argument
of g is x� x0 and not x0 � x (a common mistake in exams).

There are a number of ways of viewing the process of convolution. Most directly, the definition here
is a measure of overlap: the functions f and g are shifted relative to one another by a distance x,
and we integrate to find the product. This viewpoint is illustrated in Fig. 6.6.

But this is not the best way of thinking about convolution. The real significance of the operation is
that it represents a blurring of a function. Here, it may be helpful to think of f(x) as a signal, and
g(x) as a blurring function. As written, the integral definition of convolution instructs us to take
the signal at x0, f(x0), and replace it by something proportional to f(x0)g(x � x0): i.e. spread out
over a range of x around x0. This turns a sharp feature in the signal into something fuzzy centred
at the same location. This is exactly what is achieved e.g. by an out-of-focus camera.

Alternatively, we can think about convolution as a form of averaging. Take the above definition of
convolution and put y = x � x0. Inside the integral, x is constant, so dy = �dx0. But now we are
integrating from y = 1 to �1, so we can lose the minus sign by re-inverting the limits:

f(x) ⇤ g(x) =
Z 1

�1
dy f(x� y)g(y) . (6.60)

37

1 1

* =

-a 0 a

a

0 0-a/2 a/2 -a/2 a/2

Figure 6.7: Convolution of two top hat functions.

This says that we replace the value of the signal at x, f(x) by an average of all the values around
x, displaced from x by an amount y and weighted by the function g(y). This is an equivalent view
of the process of blurring. Since it doesn’t matter what we call the dummy integration variable,
this rewriting of the integral shows that convolution is commutative: you can think of g blurring f
or f blurring g:

f(x) ⇤ g(x) =
Z 1

�1
dz f(z)g(x� z) =

Z 1

�1
dz f(x� z)g(z) = g(x) ⇤ f(x). (6.61)

6.1 Examples of convolution

1. Let ⇧(x) be the top-hat function of width a.

• ⇧(x) ⇤ ⇧(x) is the triangular function of base width 2a.

• This is much easier to do by sketching than by working it out formally: see Figure 6.7.

2. Convolution of a general function g(x) with a delta function �(x� a).

�(x� a) ⇤ g(x) =
Z 1

�1
dx0 �(x0 � a)g(x� x0) = g(x� a). (6.62)

using the sifting property of the delta function. This is a clear example of the blurring e↵ect of
convolution: starting with a spike at x = a, we end up with a copy of the whole function g(x),
but now shifted to be centred around x = a. So here the ‘sifting’ property of a delta-function
has become a ‘shifting’ property. Alternatively, we may speak of the delta-function becoming
‘dressed’ by a copy of the function g.

The response of the system to a delta function input (i.e. the function g(x) here) is sometimes
called the Impulse Response Function or, in an optical system, the Point Spread Function.

3. Making double slits: to form double slits of width a separated by distance 2d between centres:

[�(x+ d) + �(x� d)] ⇤ ⇧(x) . (6.63)

We can form di↵raction gratings with more slits by adding in more delta functions.

38

6.2 The convolution theorem

States that the Fourier transform of a convolution is a product of the individual Fourier transforms:

FT [f(x) ⇤ g(x)] = f̃(k) g̃(k) (6.64)

FT [f(x) g(x)] =
1

2⇡
f̃(k) ⇤ g̃(k) (6.65)

where f̃(k), g̃(k) are the FTs of f(x), g(x) respectively.

Note that:

f̃(k) ⇤ g̃(k) ⌘
Z 1

�1
dq f̃(q) g̃(k � q) . (6.66)

We’ll do one of these, and we will use the Dirac delta function.

The convolution h = f ⇤ g is

h(x) =

Z 1

�1
f(x0)g(x� x0) dx0. (6.67)

We substitute for f(x0) and g(x� x0) their FTs, noting the argument of g is not x0:

f(x0) =
1

2⇡

Z 1

�1
f̃(k)eikx

0
dk

g(x� x0) =
1

2⇡

Z 1

�1
g̃(k)eik(x�x

0
) dk

Hence (relabelling the k to k0 in g, so we don’t have two k integrals)

h(x) =
1

(2⇡)2

Z 1

�1

✓

Z 1

�1
f̃(k)eikx

0
dk

Z 1

�1
g̃(k0)eik

0
(x�x

0
) dk0

◆

dx0. (6.68)

Now, as is very common with these multiple integrals, we do the integrations in a di↵erent order.
Notice that the only terms which depend on x0 are the two exponentials, indeed only part of the
second one. We do this one first, using the fact that the integral gives 2⇡ times a Dirac delta
function:

h(x) =
1

(2⇡)2

Z 1

�1
f̃(k)

Z 1

�1
g̃(k0)eik

0
x

✓

Z 1

�1
ei(k�k

0
)x

0
dx0

◆

dk0dk

=
1

(2⇡)2

Z 1

�1
f̃(k)

Z 1

�1
g̃(k0)eik

0
x [2⇡�(k � k0)] dk0dk

Having a delta function simplifies the integration enormously. We can do either the k or the k0

integration immediately (it doesn’t matter which you do – let us do k0):

h(x) =
1

2⇡

Z 1

�1
f̃(k)



Z 1

�1
g̃(k0)eik

0
x�(k � k0) dk0

�

dk

=
1

2⇡

Z 1

�1
f̃(k)g̃(k) eikx dk

Since

h(x) =
1

2⇡

Z 1

�1
h̃(k) eikx dk (6.69)

39

we see that
h̃(k) = f̃(k)g̃(k). (6.70)

Note that we can apply the convolution theorem in reverse, going from Fourier space to real space,
so we get the most important key result to remember about the convolution theorem:

Convolution in real space , Multiplication in Fourier space (6.71)

Multiplication in real space , Convolution in Fourier space

This is an important result. Note that if one has a convolution to do, it is often most e�cient to
do it with Fourier Transforms, not least because a very e�cient way of doing them on computers
exists – the Fast Fourier Transform, or FFT.

CONVENTION ALERT! Note that if we had chosen a di↵erent convention for the 2⇡ factors
in the original definitions of the FTs, the convolution theorem would look di↵erently. Make sure
you use the right one for the conventions you are using!

Note that convolution commutes, f(x) ⇤ g(x) = g(x) ⇤ f(x), which is easily seen (e.g. since the FT
is f̃(k)g̃(k) = g̃(k)f̃(k).)

Example application: Fourier transform of the triangular function of base width 2a. We know
that a triangle is a convolution of top hats:

�(x) = ⇧(x) ⇤ ⇧(x) . (6.72)

Hence by the convolution theorem:

FT [�] = (FT [⇧(x)])2 =

✓

sinc
ka

2

◆

2

(6.73)

40

FOURIER ANALYSIS: LECTURE 10

7 Parseval’s theorem for FTs (Plancherel’s theorem)

For FTs, there is a similar relationship between the average of the square of the function and the
FT coe�cients as there is with Fourier Series. For FTs it is strictly called Plancherel’s theorem, but
is often called the same as FS, i.e. Parseval’s theorem; we will stick with Parseval. The theorem
says

Z 1

�1
|f(x)|2 dx =

1

2⇡

Z 1

�1
|f̃(k)|2 dk. (7.74)

It is useful to compare di↵erent ways of proving this:

(1) The first is to go back to Fourier series for a periodic f(x): f(x) =
P

n

c
n

exp(ik
n

x), and |f |2
requires us to multiply the series by itself, which gives lots of cross terms. But when we integrate
over one fundamental period, all oscillating terms average to zero. Therefore the only terms that
survive are ones where c

n

exp(ik
n

x) pairs with c⇤
n

exp(�ik
n

x). This gives us Parseval’s theorem for
Fourier series:

1

`

Z

`/2

�`/2

|f(x)|2 dx =
X

n

|c
n

|2)
Z

`/2

�`/2

|f(x)|2 dx = `
X

n

|c
n

|2 = 1

`

X

n

|f̃ |2, (7.75)

using the definition f̃ = `c
n

. But the mode spacing is dk = 2⇡/`, so 1/` is dk/2⇡. Now we take the
continuum limit of ` ! 1 and dk

P

becomes
R

dk.

(2) Alternatively, we can give a direct proof using delta-functions:

|f(x)|2 = f(x)f ⇤(x) =

✓

1

2⇡

Z

f̃(k) exp(ikx) dk

◆

⇥
✓

1

2⇡

Z

f̃ ⇤(k0) exp(�ik0x) dk0
◆

, (7.76)

which is
1

(2⇡)2

ZZ

f̃(k)f̃ ⇤(k0) exp[ix(k � k0)] dk dk0. (7.77)

If we now integrate over x, we generate a delta-function:
Z

exp[ix(k � k0)] dx = (2⇡)�(k � k0). (7.78)

So
Z

|f(x)|2 dx =
1

2⇡

ZZ

f̃(k)f̃ ⇤(k0) �(k � k0) dk dk0 =
1

2⇡

Z

|f̃(k)|2 dk. (7.79)

7.1 Energy spectrum of decaying signal

As in the case of Fourier series, |f̃(k)|2 is often called the Power Spectrum of the signal. If we have
a field (such as an electric field) where the energy density is proportional to the square of the field,
then we can interpret the square of the Fourier Transform coe�cients as the energy associated with
each frequency – i.e. total energy radiated is

Z 1

�1
|f(t)|2 dt. (7.80)

41

0.0 0.5 1.0 1.5 2.0
0

2000

4000

6000

8000

10000

Figure 7.8: Frequency spectrum of two separate exponentially decaying systems with 2 di↵erent
time constants ⌧ . (x axis is frequency, y axis / |f̃(!)|2 in arbitrary units).

By Parseval’s theorem, this is equal to

1

2⇡

Z 1

�1
|f̃(!)|2 d!. (7.81)

and we interpret |f̃(!)|2/(2⇡) as the energy radiated per unit (angular) frequency, at frequency !.

If we have a quantum transition from an upper state to a lower state, which happens spontaneously,
then the intensity of emission will decay exponentially. We can model this semi-classically as a field
that oscillates with frequency !

0

, but with an amplitude that is damped with a timescale ⌧ = 1/a:

f(t) = e�at cos(!
0

t) (t > 0). (7.82)

Algebraically it is easier to write this as the real part of a complex exponential, do the FT with the
exponential, and take the real part at the end. So consider

f(t) =
1

2
e�at(ei!0t + e�i!0t) (t > 0). (7.83)

The Fourier transform is 1

f̃(!) =
1

2

Z 1

0

(e�at�i!t+i!0t + e�at�i!t�i!0t) dt (7.84)

) 2f̃(!) =



e�at�i!t+i!0t

�a� i! + i!
0

� e�at�i!t�i!0t

�a� i! � i!
0

�1

0

=
1

(a+ i! � i!
0

)
+

1

(a+ i! + i!
0

)

(7.85)

This is sharply peaked near ! = !
0

; near this frequency, we therefore ignore the second term, and
the frequency spectrum is

|f̃(!)|2 ' 1

4 [a+ i(! � !
0

)]

1

[a� i(! � !
0

)]
=

1

4 [a2 + (! � !
0

)2]
. (7.86)

1
Note that this integral is similar to one which leads to Delta functions, but it isn’t, because of the e�at

term. For

this reason, you can integrate it by normal methods. If a = 0, then the integral does indeed lead to Delta functions.

42

This is a Lorentzian curve with width a = 1/⌧ . Note that the width of the line in frequency is
inversely proportional to the decay timescale ⌧ . This is an example of the Uncertainty Principle,
and relates the natural width of a spectral line to the decay rate. See Fig. 7.8.

8 Correlations and cross-correlations

Correlations are defined in a similar way to convolutions, but look carefully, as they are slightly
di↵erent. With correlations, we are concerned with how similar functions are when one is displaced
by a certain amount. If the functions are di↵erent, the quantity is called the cross-correlation; if it
is the same function, it is called the auto-correlation, or simply correlation.

The cross-correlation of two functions is defined by

c(X) ⌘ hf ⇤(x)g(x+X)i ⌘
Z 1

�1
f ⇤(x)g(x+X) dx. (8.87)

Compare this with convolution (equation 6.59). X is sometimes called the lag. Note that cross-
correlation does not commute, unlike convolution. The most interesting special case is when f and
g are the same function: then we have the auto-correlation function.

The meaning of these functions is easy to visualise if the functions are real: at zero lag, the auto-
correlation function is then proportional to the variance in the function (it would be equal if we
divided the integral by a length `, where the functions are zero outside that range). So then the
correlation coe�cient of the function is

r(X) =
hf(x)f(x+X)i

hf 2i . (8.88)

If r is small, then the values of f at widely separated points are unrelated to each other: the point
at which r falls to 1/2 defines a characteristic width of a function. This concept is used particularly
in random processes.

The FT of a cross-correlation is
c̃(k) = f̃ ⇤(k) g̃(k). (8.89)

This looks rather similar to the convolution theorem, which is is hardly surprising given the similarity
of the definitions of cross-correlation and convolution. Indeed, the result can be proved directly from
the convolution theorem, by writing the cross-correlation as a convolution.

A final consequence of this is that the FT of an auto-correlation is just the power spectrum; or, to
give the inverse relation:

hf ⇤(x)f(x+X)i = 1

2⇡

Z

|f̃ |2 exp(ikX) dk. (8.90)

This is known as the Wiener-Khinchin theorem, and it generalises Parseval’s theorem (to which it
reduces when X = 0). It is straightforward to prove directly, by writing the Fourier integral for f
twice and using a delta-function; we will do this in the workshops.

Finally, note that much of this discussion applies also to periodic functions defined as Fourier series,
where the proof is even easier.

f(x) =
X

n

c
n

exp(ik
n

x)) f ⇤(x)f(x+X) =
X

n,m

c⇤
n

c
m

exp[i(k
m

� k
n

)x] exp(ik
m

X). (8.91)

43

If we now interpret the averaging h. . . i as integrating in x over one period and dividing by the
period, the exp[i(k

m

� k
n

)x] term yields just �
mn

. Hence

hf ⇤(x)f(x+X)i =
X

n

|c
n

|2 exp(ik
n

X). (8.92)

9 Fourier analysis in multiple dimensions

We have now completed all the major tools of Fourier analysis, in one spatial dimension. In many
cases, we want to consider more than one dimension, and the extension is relatively straightforward.
Start with the fundamental Fourier series, f(x) =

P

n

c
n

exp(i2⇡nx/`
x

). f(x) can be thought of
as F (x, y) at constant y; if we change y, the e↵ective f(x) changes, so the c

n

must depend on y.
Hence we can Fourier expand these as a series in y:

c
n

(y) =
X

m

d
nm

exp(i2⇡my/`
y

), (9.93)

where we assume that the function is periodic in x, with period `
x

, and y, with period `
y

. The
overall series is than

F (x, y) =
X

n,m

d
nm

exp[2⇡i(nx/`
x

+my/`
y

)] =
X

n,m

d
nm

exp[i(k
x

x+ k
y

y)] =
X

n,m

d
nm

exp[i(k · x)].

(9.94)
This is really just the same as the 1D form, and the extension to D dimensions should be obvious.
In the end, we just replace the usual kx term with the dot product between the position vector and
the wave vector.

The Fourier transform in D dimensions just involves taking the limit of `
x

! 1, `
y

! 1 etc. The
Fourier coe�cients become a continuous function of k, in which case we can sum over bins in k
space, each containing N

modes

(k) modes:

F (x) =
X

bin

d(k) exp[i(k · x)]N
modes

. (9.95)

The number of modes in a given k-space bin is set by the period in each direction: allowed modes
lie on a grid of points in the space of k

x

, k
y

etc. as shown in Figure 9.9. If for simplicity the period
is the same in all directions, the density of states is `D/(2⇡)D:

N
modes

=
`D

(2⇡)D
dDk. (9.96)

This is an important concept which is used in many areas of physics.

The Fourier expression of a function is therefore

F (x) =
1

(2⇡)D

Z

F̃ (k) exp[i(k · x) dDk], (9.97)

Where we have defined F̃ (k) ⌘ `Dd(k). The inverse relation would be obtained as in 1D, by
appealing to orthogonality of the modes:

F̃ (k) =

Z

F (x) exp[�i(k · x)] dDx. (9.98)

44

k

2/

kx

y

L

Figure 9.9: Illustrating the origin of the density of states in 2D. The allowed modes are shown as
points, with a separation in k

x

and k
y

of 2⇡/`, where ` is the periodicity. The number of modes
between |k| and |k| + d|k| (i.e. inside the shaded annulus) is well approximated by (`/2⇡)2 times
the area of the annulus, as ` ! 1, and the mode spacing tends to zero. Clearly, in D dimensions,
the mode density is just (`/2⇡)D.

45

FOURIER ANALYSIS: LECTURE 11

10 Digital analysis and sampling

Imagine we have a continuous signal (e.g. pressure of air during music) which we sample by making
measurements at a few particular times. Any practical storage of information must involve this
step of analogue-to-digital conversion. This means we are converting a continuous function into
one that is only known at discrete points – i.e. we are throwing away information. We would feel
a lot more comfortable doing this if we knew that the missing information can be recovered, by
some form of interpolation between the sampled points. Intuitively, this seems reasonable if the
sampling interval is very fine: by the definition of continuity, the function between two sampled
points should be arbitrarily close to the average of the sample values as the locations of the samples
gets closer together. But the sampling interval has to be finite, so this raises the question of how
coarse it can be; clearly we would prefer to use as few samples as possible consistent with not losing
any information. This question does have a well-posed answer, which we can derive using Fourier
methods.

The first issue is how to represent the process of converting a function f(x) into a set of values
{f(x

i

)}. We can do this by using some delta functions:

f(x) ! f
s

(x) ⌘ f(x)
X

i

�(x� x
i

). (10.99)

This replaces our function by a sum of spikes at the locations x
i

, each with a weight f(x
i

). This
representation of the sampled function holds the information of the sample values and locations.
So, for example, if we try to average the sampled function over some range, we automatically get
something proportional to just adding up the sample values that lie in the range:

Z

x2

x1

f
s

(x) dx =
X

in range

f(x
i

). (10.100)

10.1 The infinite comb

If we sample regularly with a spacing �x, then we have an ‘infinite comb’ – an infinite series of
delta functions. The comb is (see Fig. 10.10):

g(x) =
1
X

j=�1

�(x� j�x) (10.101)

This is also known as the Shah function.

To compute the FT of the Shah function, we will write it in another way. This is derived from
the fact that the function is periodic, and therefore suitable to be written as a Fourier series with
` = �x:

g(x) =
X

n

c
n

exp(2⇡nix/�x). (10.102)

The coe�cients c
n

are just

c
n

=
1

�x

Z

�x/2

��x/2

�(x) dx =
1

�x
, (10.103)

46

x 2 x 3 x 4 xï xï2 xï3 xï4 x 66666 666

x6

x0

6 6 6 6

6

0 uï2/ x ï1/ x 1/ x 2/ x

1/ x

Figure 10.10: Top: An infinite comb in real space. This represents the sampling pattern of a
function which is sampled regularly every �x. Bottom: The FT of the infinite comb, which is also
an infinite comb. Note that u here is k/(2⇡).

so that

g(x) =
1

�x

X

n

exp(2⇡nix/�x) =
1

2⇡

Z

g̃(k) exp(ikx) dx. (10.104)

From this, we can see that g̃(k) must involve a sum of delta-functions in k space, since g(x) has
ended up as a sum of exp(ik

n

x) terms, each of which could be sifted out of the Fourier integral by a
contribution to g̃(k) that is / �(k�k

n

). More formally, we could take the FT of our new expression
for g(x), which would yield a series of delta-functions. In any case,

g̃(k) =
2⇡

�x

1
X

n=�1
�(k � 2⇡n/�x). (10.105)

which is an infinite comb in Fourier space, with spacing 2⇡/�x.

The FT of a function sampled with an infinite comb is therefore (1/2⇡ times) the convolution of
this and the FT of the function:

f̃
s

(k) =
1

2⇡
f̃(k) ⇤ g̃(k) = 1

�x

1
X

n=�1
f̃(k � 2⇡n/�x). (10.106)

In other words, each delta-function in the k-space comb becomes ‘dressed’ with a copy of the
transform of the original function.

47

Figure 10.11: If the sampling is fine enough, then the original spectrum can be recovered from the
sampled spectrum.

Figure 10.12: If the sampling is not fine enough, then the power at di↵erent frequencies gets mixed
up, and the original spectrum cannot be recovered.

48

Figure 10.13: If sin t is sampled at unit values of t, then sin(t + 2⇡t) is indistinguishable at the
sampling points. The sampling theorem says we can only reconstruct the function between the
samples if we know that high-frequency components are absent.

10.2 Shannon sampling, aliasing and the Nyquist frequency

We can now go back to the original question: do the sampled values allow us to reconstruct the
original function exactly? An equivalent question is whether the transform of the sampled function
allows us to reconstruct the transform of the original function.

The answer is that this is possible (a) if the original spectrum is bandlimited, which means that the
power is confined to a finite range of wavenumber (i.e. there is a maximum wavenumber k

max

which
has non-zero Fourier coe�cients); and (b) if the sampling is fine enough. This is illustrated in Figs
10.11 and 10.12. If the sampling is not frequent enough, the power at di↵erent wavenumbers gets
mixed up. This is called aliasing. The condition to be able to measure the spectrum accurately is
to have a sample at least as often as the Shannon Rate

�x =
1

⇡k
max

. (10.107)

The Nyquist wavenumber is defined as

k
Nyquist

=
⇡

�x
(10.108)

which needs to exceed the maximum wavenumber in order to avoid aliasing:

k
Nyquist

� k
max

. (10.109)

For time-sampled data (such as sound), the same applies, with wavenumber k replaced by frequency
!.

There is a simple way of seeing that this makes sense, as illustrated in Figure 10.13. Given samples
of a Fourier mode at a certain interval, �x, a mode with a frequency increased by any multiple of
2⇡/�x clearly has the same result at the sample points.

49

10.2.1 Interpolation of samples

The idea of having data that satisfy the sampling theorem is that we should be able to reconstruct
the full function from the sampled values; how do we do this in practice? If the sampled function is
the product of f(x) and the Shah function, we have seen that the FT of the sampled function is the
same as f̃/�x, for |k| < ⇡/�x. If we now multiply by T̃ (k): a top-hat in k space, extending from
�⇡/�x to +⇡/�x, with height �x, then we have exactly f̃ and can recover f(x) by an inverse
Fourier transform. This k-space multiplication amounts to convolving the sampled data with the
inverse Fourier transform of T (k), so we recover f(x) in the form

f(x) = [f(x)g(x)]⇤T (x) =
Z

f(q)
X

n

�(q�n�x)T (x�q) dq =

Z

X

n

f(n�x)�(q�n�x)T (x�q) dq,

(10.110)
using f(x)�(x� a) = f(a)�(x� a). The sum of delta-functions sifts to give

f(x) =
X

n

f(n�x)T (x� n�x), (10.111)

i.e. the function T (x) = sin[⇡x/�x]/(⇡x/�x) is the interpolating function. This is known as ‘sinc
interpolation’.

50

FOURIER ANALYSIS: LECTURE 12

10.3 CDs and compression

Most human beings can hear frequencies in the range 20 Hz – 20 kHz. The sampling theorem means
that the sampling frequency needs to be at least 40 kHz to capture the 20 kHz frequencies. The
CD standard samples at 44.1 kHz. The data consist of stereo: two channels each encoded as 16-bit
integers. Allowing one bit for sign, the largest number encoded is thus 215� 1 = 32767. This allows
signals of typical volume to be encoded with a fractional precision of around 0.01% – an undetectable
level of distortion. This means that an hour of music uses about 700MB of information. But in
practice, this requirement can be reduced by about a factor 10 without noticeable degradation in
quality. The simplest approach would be to reduce the sampling rate, or to encode the signal
with fewer bits. The former would require a reduction in the maximum frequency, making the
music sound dull; but fewer bits would introduce distortion from the quantization of the signal.
The solution implemented in the MP3 and similar algorithms is more sophisticated than this: the
time series is split into ‘frames’ of 1152 samples (0.026 seconds at CD rates) and each is Fourier
transformed. Compression is achieved by storing simply the amplitudes and phases of the strongest
modes, as well as using fewer bits to encode the amplitudes of the weaker modes, according to a
‘perceptual encoding’ where the operation of the human ear is exploited – knowing how easily faint
tones of a given frequency are masked by a loud one at a di↵erent frequency.

10.4 Prefiltering

If a signal does not obey the sampling theorem, it must be modified to do so before digitization.
Analogue electronics can suppress high frequencies – although they are not completely removed.
The sampling process itself almost inevitably performs this task to an extent, since it is unrealistic
to imagine that one could make an instantaneous sample of a waveform. Rather, the sampled signal
is probably an average of the true signal over some period.

This is easily analysed using the convolution theorem. Suppose each sample, taken at an interval ⌧ ,
is the average of the signal over a time interval T , centred at the sample time. This is a convolution:

f
c

(t) =

Z

f(t0)g(t� t0) dt0, (10.112)

where g(t� t0) is a top hat of width T centred on t0 = t. We therefore know that

f̃
c

(!) = f̃(!) sin(!T/2)/(!T/2). (10.113)

At the Nyquist frequency, ⇡/⌧ , the Fourier signal in f is suppressed by a factor sin(⇡T/2⌧)/(⇡T/2⌧).
The natural choice of T would be the same as ⌧ (accumulate an average signal, store it, and start
again). This gives sin(⇡/2)/(⇡/2) = 0.64 at the Nyquist frequency, so aliasing is not strongly
eliminated purely by ‘binning’ the data, and further prefiltering is required before the data can be
sampled.

11 Discrete Fourier Transforms & the FFT

This section is added to the course notes as a non-examinable supplement, which may be of interest
to those using numerical Fourier methods in project work. We have explored the properties of

51

sampled data using the concept of an infinite array of delta functions, but this is not yet a practical
form that can be implemented on a computer.

11.1 The DFT

Suppose that we have a function, f(x), that is periodic with period `, and which is known only at
N equally spaced values x

n

= n(`/N). Suppose also that f(x) is band-limited with a maximum
wavenumber that satisfies |k

max

| < ⇡/(`/N), i.e. it obeys the sampling theorem. If we wanted to
describe this function via a Fourier series, we would need the Fourier coe�cients

f
k

(k) =
1

`

Z

`

0

f(x) exp[�ikx] dx. (11.114)

This integral can clearly be approximated by summing over the N sampled values:

f
k

(k) =
1

`

X

n

f(x
n

) exp[�ikx
n

] `/N =
1

N

X

n

f(x
n

) exp[�ikx
n

]; (11.115)

in fact, we show below that this expression yields the exact integral for data that obey the sampling
theorem. The range of grid values is irrelevant because of the periodicity of f . Suppose we sum
from n = 1 to N and then change to n = 0 to N � 1: the sum changes by f(x

0

) exp[�ikx
0

] �
f(x

N

) exp[�ikx
N

], but f(x
0

) = f(x
N

) and x
N

� x
0

= `. Since the allowed values of k are multiples
of 2⇡/`, the change in the sum vanishes. We can therefore write what can be regarded as the
definition of the discrete Fourier transform of the data:

f
k

(k
m

) =
1

N

N�1

X

n=0

f(x
n

) exp[�ik
m

x
n

], (11.116)

where the allowed values of k are k
m

= m(2⇡/`) and the allowed values of x are x
n

= n(`/N). This
expression has an inverse of very similar form:

f(x
j

) =
N�1

X

m=0

f
k

(k
m

) exp[ik
m

x
j

]. (11.117)

To prove this, insert the first definition in the second, bearing in mind that k
m

x
n

= 2⇡mn/N . This
gives the expression

1

N

X

m,n

f(x
n

) exp[2⇡im(j � n)/N] =
1

N

X

m,n

f(x
n

) zm, (11.118)

where z = exp[2⇡i(j�n)/N]. Consider
P

m

zm: where j = n we have z = 1 and the sum is N . But
if j 6= n, the sum is zero. To show this, consider z

P

m

zm =
P

m

zm + zN � 1. But z
N

= 1, and
we have z

P

m

zm =
P

m

zm, requiring the sum to vanish if z 6= 1. Hence
P

m

zm = N�
jn

, and this
orthogonality relation proves that the inverse is exact.

An interesting aspect of the inverse as written is that it runs only over positive wavenumbers; don’t
we need k to be both positive and negative? The answer comes from the gridding in x and k: since
k
m

x
n

= 2⇡mn/N , letting m ! n + N has no e↵ect. Thus a mode with m = N � 1 is equivalent
to one with m = �1 etc. So the k-space array stores increasing positive wavenumbers in its first
elements, jumping to large negative wavenumbers once k exceeds the Nyquist frequency. In a little

52

more detail, the situation depends on whether N is odd or even. If it is odd, then m = (N +1)/2 is
an integer equivalent to �(N � 1)/2, so the successive elements m = (N � 1)/2 and m = (N +1)/2
hold the symmetric information near to the Nyquist frequency, |k| = (N � 1)/N ⇥ ⇡/(`/N). On
the other hand, if N is even, we have a single mode exactly at the Nyquist frequency: m = N/2)
|k| = (N/2)(2⇡/`) = ⇡/(`/N). This seems at first as though the lack of pairing of modes at positive
and negative k may cause problems with enforcing the Hermitian symmetry needed for a real f(x),
this is clearly not the case, since we can start with a real f and generate the N Fourier coe�cients
as above.

Finally, we should prove how this connects with our experience with using Fourier series. Here we
would say

f
k

(k) =
1

`

Z

`

0

f(x) exp[�ikx] dx. (11.119)

We have taken the integral over 0 to ` rather than symmetrically around zero, but the same Fourier
coe�cient arises as long as we integrate over one period. Now, we have seen that the exact function
can be interpolated from the sampled values:

f(x) =
1
X

n=�1
f(nX)T (x� nX) =

1
X

m=�1

N�1

X

n=0

f([n+mN]X)T (x� [n+mN]X), (11.120)

where X = `/N , T is the sinc interpolation function, and the second form explicitly sums over all
the periodic repetitions of f . Putting this into the integral for f

k

gives

f
k

=
1

`

X

m,n

f([n+mN]X)

Z

`

0

T (x� [n+mN]X) exp[�ix] dx (11.121)

=
1

`

X

m,n

f([n+mN]X) exp[�ik(n+mN)X]

Z

y2

y1

T (y) exp[�iky] dy (11.122)

=
1

`

N�1

X

n=0

f(nX) exp[�iknX]
1
X

m=�1

Z

y2

y1

T (y) exp[�iky] dy (11.123)

=
1

`

N�1

X

n=0

f(nX) exp[�iknX]

Z 1

�1
T (y) exp[�iky] dy. (11.124)

The successive simplifications use (a) the fact that f is periodic, so f(x + NX) = f(x); (b) the
fact that allowed wavenumbers are a multiple of 2⇡/`, so kNX is a multiple of 2⇡; (c) recognising
that the y limits are y

1

= �(n +mN)X and y
2

= ` � (n +mN)X, so that summing over m joins
together segments of length ` into an integral over all values of y. But as we saw in section 10.2.1,
the integral has the constant value X while |k| is less than the Nyquist frequency. Thus, for the
allowed values of k, f

k

= (1/N)
P

N�1

n=0

f(nX) exp[�iknX], so that the DFT gives the exact integral
for the Fourier coe�cient.

11.2 The FFT

We have seen the advantages of the DFT in data compression, meaning that it is widely used
in many pieces of contemporary consumer electronics. There is therefore a strong motivation to
compute the DFT as rapidly as possible; the Fast Fourier Transform does exactly this.

53

At first sight, there may seem little scope for saving time. If we define the complex number
W ⌘ exp[�i2⇡/N], then the DFT involves us calculating the quantity

F
m

⌘
N�1

X

n=0

f
n

W nm. (11.125)

The most time-consuming part of this calculation is the complex multiplications between f
n

and
powers of W . Even if all the powers of W are precomputed and stored, there are still N�1 complex
multiplications to carry out for each of N �1 non-zero values of m, so apparently the time for DFT
computation scales as N2 for large N .

The way to evade this limit is to realise that many of the multiplications are the same, because
WN = 1 but W nm has nm reaching large multiples of N – up to (N � 1)2. As an explicit example,
consider N = 4:

F
0

= f
0

+ f
1

+ f
2

+ f
3

(11.126)

F
1

= f
0

+ f
1

W + f
2

W 2 + f
3

W 3 (11.127)

F
2

= f
0

+ f
1

W 2 + f
2

W 4 + f
3

W 6 (11.128)

F
3

= f
0

+ f
1

W 3 + f
2

W 6 + f
3

W 9. (11.129)

There are apparently 9 complex multiplications (plus a further 5 if we need to compute the powers
W 2,W 3,W 4,W 6,W 9). But the only distinct powers needed are W 2 & W 3. The overall transform
can then be rewritten saving four multiplications: removing a redundant multiplication by W 4;
recognising that the same quantities appear in more than one F

i

; and that some multiplications
distribute over addition:

F
0

= f
0

+ f
1

+ f
2

+ f
3

(11.130)

F
1

= f
0

+ f
2

W 2 +W (f
1

+ f
3

W 2) (11.131)

F
2

= f
0

+ f
2

+W 2(f
1

+ f
3

) (11.132)

F
3

= f
0

+ f
2

W 2 +W 3(f
1

+ f
3

W 2). (11.133)

So now there are 5 multiplications, plus 2 for the powers: a reduction from 14 to 7.

It would take us too far afield to discuss how general algorithms for an FFT are constructed to
achieve the above savings for any value of N . The book Numerical Recipes by Press et al. (CUP) has
plenty of detail. The result is that the naive ⇠ N2 time requirement can be reduced to ⇠ N lnN ,
provided N has only a few small prime factors – most simply a power of 2.

54

