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ABSTRACT
We present the results of a large library of cosmological N-body simulations, using power-law
initial spectra. The non-linear evolution of the matter power spectra is compared with the
predictions of existing analytic scaling formulae based on the work of Hamilton et al. The
scaling approach has assumed that highly non-linear structures obey ‘stable clustering’ and are
frozen in proper coordinates. Our results show that, when transformed under the self-similarity
scaling, the scale-free spectra define a non-linear locus that is clearly shallower than would be
required under stable clustering. Furthermore, the small-scale non-linear power increases as
both the power spectrum index n and the density parameter � decrease, and this evolution is not
well accounted for by the previous scaling formulae. This breakdown of stable clustering can
be understood as resulting from the modification of dark matter haloes by continuing mergers.
These effects are naturally included in the analytic ‘halo model’ for non-linear structure; we
use this approach to fit both our scale-free results and also our previous cold dark matter data.
This method is more accurate than the commonly used Peacock–Dodds formula and should
be applicable to more general power spectra. Code to evaluate non-linear power spectra using
this method is available from http://as1.chem.nottingham.ac.uk/∼res/software.html. Following
publication, we will make the power-law simulation data publically available through the Virgo
website http://www.mpa-garching.mpg.de/Virgo/.

Key words: methods: N-body simulations – cosmology: theory – large-scale structure of
Universe.

1 I N T RO D U C T I O N

In the current cosmological paradigm, structures grow through the
gravitational instability of collisionless dark matter fluctuations.
This occurs in a hierarchical way, with small-scale perturbations
collapsing first and large-scale perturbations later. One of the most
direct manifestations of this non-linear process is the evolution of
the power spectrum of the mass, P(k), where k is the wavenumber
of a given Fourier mode. Understanding this evolution of the power
spectrum is one of the key problems in structure formation, being
directly related to the abundance and clustering of galaxy systems as
a function of mass and redshift. If the processes that contribute to the
evolution can be captured in an accurate analytic model, this opens
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the way to using observations of the non-linear mass distribution
(from large-scale galaxy clustering or weak gravitational lensing)
in order to recover the primordial spectrum of fluctuations.

One of the most influential attempts at such an analytic descrip-
tion of clustering evolution was the ‘scaling Ansatz’ of Hamilton
et al. (1991, hereafter HKLM), which is described in Section 2. This
scaling procedure was generalized to models with � �= 1 and given
a more accurate N-body calibration by Peacock & Dodds (1996,
hereafter PD96). HKLM assumed that a non-linear collapsed ob-
ject would decouple from the global expansion of the Universe to
form an isolated system in virial equilibrium – the ‘stable clus-
tering’ hypothesis of Davis & Peebles (1977). This assumption
has been widely adopted, and yet it appears somewhat inconsis-
tent with hierarchical models – in which objects are continuously
accreting mass and growing through mergers. Indeed, the valid-
ity of stable clustering has been increasingly questioned in recent
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years (e.g. Yano & Gouda 2000; Caldwell et al. 2001). One of our
aims in this paper is thus to establish whether stable clustering is
relevant for understanding the small-scale evolution of the power
spectrum.

We therefore explore the gravitational instability of dark matter
fluctuations through a series of large N-body simulations of cluster-
ing from power-law initial conditions, with

P(k) ∝ kn . (1)

We consider both � = 1 models, in which the evolution can obey
a similarity solution, and also low-density models with and without
a cosmological constant. We demonstrate that the resolution of the
simulations is sufficient to measure the power well into the regime
at which the HKLM procedure predicts a well-defined slope for
the power spectrum determined by stable clustering. In practice, we
find that the power spectra are generally shallower than would be
required for clustering to be stable on small scales. Furthermore, as
both n and � decrease, the amplitude of the small-scale spectrum
increases in a manner that is not well described by any of the previous
fitting formulae. In light of these results, a new method for predicting
non-linear spectra is proposed. This method is based on the ‘halo
model’ (e.g. Peacock & Smith 2000; Seljak 2000), which does not
assume stable clustering. This allows us to fit our data and also the
cold dark matter (CDM) data of Jenkins et al. (1998, hereafter J98)
with a high degree of accuracy.

The paper is structured as follows. In Section 2 we provide a brief
overview of the theoretical understanding of non-linear evolution.
In particular, a description of the stable clustering hypothesis, the
non-linear HKLM scaling relations and the halo model are given, as
these ideas are central to this paper. We also discuss the scale-free
models and their self-similarity properties. In Section 3 we describe
the numerical simulations and we provide a visual comparison of the
growth of structure in the different scale-free models. In Section 4
we describe an improved method for measuring power spectra and in
Section 5 we present the power spectra data and contrast them with
the current non-linear fitting formulae. In Section 6 we describe a
new approach to fitting power spectra and its generalization to CDM,
and then compare our new globally optimized formula with the
results from Section 5 and also the CDM data. Finally, in Section 7
we draw our conclusions and discuss our findings in a wider context.

2 D E S C R I P T I O N O F N O N - L I N E A R
E VO L U T I O N

2.1 From linear theory to stable clustering

The mass density field, at comoving position x and time t, is defined
as

ρ(x, t) = ρ̄(t)[1 + δ(x, t)], (2)

where δ is the density fluctuation about the homogeneous back-
ground ρ̄. The two-point auto-correlation function of the density
field is

ξ (r ) = 〈δ(x)δ(x + r )〉, (3)

which in three dimensions is related to the dimensionless power
spectrum 	2(k) through the integral relation

ξ (r ) =
∫

	2(k)
sin kr

kr

dk

k
, (4)

where we have assumed that the field is isotropic and homogeneous.
	2 is the contribution to the fractional density variance per unit

ln k. In the convention of Peebles (1980), this is

	2(k) ≡ dσ 2

d ln k
= V

(2π)3
4πk3 P(k), (5)

where V is a normalization volume.
When δ(x, t) � 1 the temporal evolution of the fluctuation is

separable and the field scales as

δ(x, t) = D(t)

D(t0)
δ(x, t0), (6)

where D(t) is a growth factor, the exact form of which can be de-
termined from linear theory. As δ(x, t) → 1, increasingly higher
orders of perturbation theory are required (see Bernardeau et al.
2002, for a thorough review). Eventually, perturbation theory fails
and numerical methods must be applied. Even so, it was proposed
(Peebles 1974a, 1980; Davis & Peebles 1977) that clustering in
the very non-linear regime might be understood by assuming that
regions of high density contrast undergo virialization and subse-
quently maintain a fixed proper density. The correlation function for
a population of such systems would then simply evolve according
to ξ (r, t) ∝ 1/ρ̄ ∝ a3, where r is a proper distance. This evolution
was termed ‘stable clustering’. Peebles went on to show that if the
initial power spectrum was a pure power law in k with spectral in-
dex n, P(k) ∝ kn, and if � = 1, then under the stable clustering
hypothesis, the slope of the non-linear correlation function would
be directly related to the spectral index through the relation

ξ (r, t) ∝ r−γ ; γ = 3(3 + n)

5 + n
. (7)

Hence, if stable clustering applies, then the non-linear density field
retains some memory of its initial configuration, and in principle
can be used to measure the primordial spectrum of fluctuations.

2.2 The HKLM scaling relations

HKLM developed a method for interpolating between linear theory
on large scales and the non-linear predictions of the stable clustering
hypothesis on small scales. They showed that the non-linear volume-
averaged two-point correlation function,

ξ̄ (x) ≡ 3

x3

∫ x

0

y2ξ (y) dy, (8)

measured from the scale-free simulations of Efstathiou et al. (1988),
could be parametrized by a simple function of the linear correlation
function, provided that non-linear evolution were to induce a change
of scale.

The transformation of scales follows from an intuitive continuity
argument, based upon the ‘spherical top-hat’ model. Let the mass
enclosed within a spherical overdensity in the initial stages of evo-
lution be m0(< �) and its mass at some later time be m(<x). As each
shell evolves, it will reach a maximum expansion point, turn around
and collapse. If there is no shell crossing, then mass is conserved
and

m0(<�) = 4

3
πρ(<�)�3 = 4

3
πρ(<x)x3 = m(< x). (9)

The argument now identifies 1+ ξ̄ as the factor by which the density
is enhanced relative to the mean (Peebles 1980). Provided ξ̄L � 1,
this implies the scaling

x3
[
1 + ξ̄NL(x, t)

] = �3, (10)

where x represents a non-linear scale and � is a Lagrangian scale.
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Finally, after this rescaling, the non-linear correlations are taken
to be a universal function of the linear ones:

ξ̄NL(x, t) = f [ξ̄L(�, t)]. (11)

HKLM then assumed that the functional form of f (y) could be de-
termined analytically in two regimes: in the linear regime, where
ξ̄L � 1, f (y) = y; when ξ̄L � 1, galaxy groups would exhibit
‘stable clustering’, for which 	2

NL ∝ a3 and since 	2
L ∝ a2, this im-

plied that f (y) ∝ y3/2. The interpolation between these two regimes,
where y ∼ 1, was determined empirically by HKLM, by compari-
son with numerical simulation. However, Padmanabhan (1996) pro-
posed that the quasilinear regime could also be understood analyt-
ically. He considered the point at which a spherical perturbation
would reach its maximum radius, which is xmax = l/δL ∝ l/ξ̄L,
according to the spherical model. Padmanabhan thus conjectured
that

ξ̄Q ∝ ρ(<xmax) ∝ m

x3
max

∝ m0

x3
max

∝ l3

l3/ξ̄ 3
L

∝ ξ̄ 3
L (12)

(in effect rediscovering the argument of Gott & Rees 1975). Al-
though useful heuristically in explaining why the quasilinear regime
of f NL should be steeper than either the linear or non-linear regime,
it is not clear that this expression matches the observed quasilinear
slope very well (Padmanabhan et al. 1996; Jain 1997). We investi-
gate this further in Section 5.

HKLM’s non-linear scaling argument was further developed by
Peacock & Dodds (1994, PD94), who proposed that the scaling
Ansatz could be used for predicting power spectra by simply replac-
ing ξ̄ → 	2 and letting the linear and non-linear scales represent
linear and non-linear wavenumbers: � = k−1

L and x = k−1
NL. This

suggested the formalism

	2
NL(kNL) = fNL

[
	2

L(kL)
]

;

kNL = [
1 + 	2

NL(kNL)
]1/3

kL. (13)

The accuracy of the HKLM and PD94 scaling formulae was tested
by Jain, Mo & White (1995, hereafter JMW95). They performed a
series of simulations with 1003 particles as opposed to the previous
323, and discovered that the non-linear locus described by the data
exhibited a strong n dependence. The HKLM and PD94 functions
underestimated the measured correlation functions and power spec-
tra, the fits being worse for more negative n. JMW95 then showed
that this n dependence could be removed by a simple scaling of
the variables in the log ξ̄NL(x, t)–log ξ̄L(�, t) plane. In order for the
model to be applied to curved spectra, such as the CDM model, an
effective spectral index neff was required. JMW95 proposed that the
appropriate n should be given by

neff = d ln P(k)

d ln k

∣∣∣∣
k=1/Rc

, (14)

where Rc is the scale on which the variance of the density field is
unity. This showed the right response with scale, and described their
data to a precision of 15–20 per cent, which was adequate given the
scatter within the simulations.

Further refinements were again made by Peacock & Dodds (1996,
hereafter PD96), who used a large ensemble of 803 particle simula-
tions to investigate the n dependence and the response of the cluster-
ing to low-density universes: � < 1 and � + � = 1, where � and �

are the densities associated with matter and the cosmological con-
stant, relative to the Einstein–de Sitter universe. PD96 concluded
that non-linear effects tend to increase the power on small scales for
spectra with more negative spectral indices and for lower densities.

PD96 also produced a fitting formula that modelled their data, and
also CDM-like spectra through defining an effective spectral index
that changed with each wavenumber,

neff(kL) = d ln P

d ln k
(k = kL/2). (15)

Subsequently, high-resolution numerical simulations of CDM-
like universes have shown that the PD96 formulae match the ob-
served non-linear power spectra closely (Mo, Jing & Börner 1997a;
J98; Smith et al. 1998), but with some significant deviations. Jain
& Berchinger (1998) found a larger discrepancy in their 2563 P3M
simulation of clustering from an n = −2 power spectrum, with both
the formula of JMW95 and PD96 underestimating the quasi-linear
power. They also claimed that their results for highly non-linear
clustering were in accordance with stable clustering, although finite-
volume effects have thrown their results into question (Ma & Fry
2000a; Scoccimarro et al. 2001). We discuss this issue in further
detail in Section 3.3. Recent attempts to constrain cosmological pa-
rameters from weak gravitational lensing studies, which require as
input the non-linear matter power spectrum, have also uncovered
deficiencies in the PD96 formula, with the poorest performance for
the � = 1 τCDM model (Van Waerbeke et al. 2001).

2.3 A dark matter halo approach

More recently an entirely different analytical model for non-linear
gravitational clustering has emerged: the ‘halo model’. In this model,
the density field is decomposed into a distribution of clumps of
matter with some density profile. This basic idea goes back to Ney-
man & Scott (1952), and recurs in a more modern form in Scherrer
& Bertschinger (1991). Following the realization that galaxy bias
was strongly influenced by the number of galaxies in a halo (Jing,
Mo & Börner 1998; Benson et al. 2000), a number of authors (Ma
& Fry 2000a; Peacock & Smith 2000; Seljak 2000; Scoccimarro
et al. 2001) resurrected the Neyman–Scott model with a modern
mass function for dark haloes (Press & Schechter 1974; Sheth &
Tormen 1999; Jenkins et al. 2001), plus realistic density profiles
(Navarro, Frenk & White 1996, 1997; Moore et al. 1999), and a
mass-dependent galaxy ‘occupation number’. The inclusion of bias
is an attractive aspect of the halo model, but we will not be concerned
with this here.

In the halo model, the large-scale clustering of the mass arises
through the correlations between different haloes. Prescriptions for
this clustering were given by Mo & White (1996), Mo, Jing & White
(1997b), Sheth & Lemson (1999), Sheth & Tormen (1999), Sheth,
Mo & Tormen (2000), and a recent example of their effectiveness is
shown clearly in Colberg et al. (2000). On small scales, the correla-
tions are derived purely from the convolution of the density profile of
the halo with itself (Peebles 1974b; McClelland & Silk 1977; Sheth
& Jain 1997). This model thus makes strong predictions about the
clustering on small scales. Unless the density profile and mass func-
tion obey a specific relationship, the merger-driven evolution of the
mass function means that the stable clustering approximation does
not hold true (Ma & Fry 2000b; Yano & Gouda 2000). For a more
detailed review of the halo model and its applications we refer the
reader to Sheth & Cooray (2002).

2.4 Scale-free models

An elegant way to study non-linear evolution is to simulate
‘scale-free’ universes that have no inbuilt characteristic physical
length-scales. We follow Efstathiou et al. (1988) and require two
conditions to be satisfied.
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(i) The initial power spectrum of fluctuations is a power law:

P(k) = Akn ; 1 < n < −3. (16)

(ii) The evolution of the scalefactor for the cosmological model
power law in time:

a(t) ∝ tα. (17)

The most interesting cosmological model that satisfies these con-
straints is the Einstein–de Sitter model: α = 2/3, � = 1 and � =
0, so that the linear-theory growth of the power spectrum is P(k) ∝
a2.

In this case, the only natural way to define a characteristic length is
through the scale at which the fluctuations become non-linear. The
variance of the linear density field, smoothed on some comoving
length-scale x, is

σ 2(x, a) =
∫

	2
L(k, a)|W (kx)|2 dk

k
, (18)

where W is the filter function. If we assume 	2(a, k) ∝ a2 k3+n , and
that the filter causes a cut-off at some high spatial frequency kc ∼
1/x , we find

σ 2(kc, a) ∝
∫ kc

0

a2kn+2 dk ∝ a2x−(3+n)
c . (19)

We now define a non-linear wavenumber, kNL such that σ 2(kNL , a)
= 1, so that

kNL(a) ∝ a−2/(3+n). (20)

Under this transformation, it is plausible that the statistics of gravi-
tational clustering will be expressible as a similarity solution:

P(k, a) = P̃(k/kNL) (21)

(Davis & Peebles 1977; Peebles 1980; Efstathiou et al. 1988; Jain &
Berchinger 1998). No formal proof of the similarity solution exists,
and this conjecture is something that must be tested empirically via
simulation. We refer the reader to the work of Colombi, Bouchet
& Hernquist (1996) for further discussion of the range of spectral
indices for which self-similarity should be valid.

In practice, we present good evidence in this paper that the power
spectrum does scale in this way for 0 � n � −2. Spectra outside
this range are harder to simulate and so are not yet tested. We may,
however, anticipate that only certain initial spectra will evolve in a
self-similar fashion. For n � 1, the amplitude of gravitational po-
tential fluctuations diverges on small scales, so one might question
the idea of a hierarchy that grows via the merger and disruption
of small systems. However, this argument is not definitive, since
the similarity solutions generally depart from P ∝ kn for k > kNL.
We seek a function that is of this power-law form for k < kNL and
some unknown form at larger k, and that evolves in a self-similar
fashion. In practice, this function is found by starting with exact
power-law initial conditions, and hoping that the simulation will re-
lax into the desired self-similar form as it evolves. The existence of a
self-similar solution with n � 1 on large scales therefore remains an
open question. On large scales, the peculiar velocity field diverges if
n � −1, so more negative indices may seem problematic. This does
not seem to be a problem in practice, probably for the reasons dis-
cussed by Bernardeau et al. (2002): the divergent modes of very long
wavelength really just cause a translation, and Galilean invariance
means that the statistics of smaller-scale clustering are unaffected.

Certainly, well-defined results can be obtained from perturbation
theory for n more negative than −1, so the only clear limit is n �
−3, for which the whole idea of asymptotic homogeneity breaks
down.

If we can find initial spectra for which self-similarity applies, this
is an extremely useful means of assessing the reliability of N-body
results. Also, over limited ranges of mass, the scale-free models
correspond directly to more physically motivated models such as
CDM, for which the spectral index is a slow function of scale. As
we shall show, an analytic description of non-linear evolution in the
scale-free case leads quite directly to a method that can also give an
accurate description of non-linear evolution in CDM models.

3 T H E N U M E R I C A L S I M U L AT I O N S

We have produced a large library of N-body simulations with N =
2563 particles. We considered Einstein–de Sitter (� = 1) models,
and also low-density open and flat � geometries. The spectral in-
dices that have been simulated are n = −2, −1.5, −1 and 0 and two
realizations of each spectral index were carried out. The simulations
were executed on either 128 or 64 processors of the Edinburgh Cray
T3E supercomputer, using the parallelized P3M ‘ SHMEM’ version of
HYDRA (Couchman, Thomas & Pearce 1995; Pearce & Couchman
1997; Macfarland et al. 1998), in purely collisionless dark matter
mode.

The large-scale force calculation in HYDRA used a 5123 Fourier
mesh, supplemented by direct summation of close pairs to achieve
the desire total interparticle force. As usual, this is softened on small
scales in order to suppress two-body encounters. In HYDRA, the
transition from pure Newtonian to constant force is achieved using a
‘spline-kernel softening’; with this method, the interparticle forces
become precisely Newtonian after 2.34 times the softening length.
In all cases, we adopted a comoving softening length that is simply
a fraction f of the interparticle spacing

ε = f L/N 1/3, (22)

where L is the side of the simulation box. We used f � 0.064,
which is slightly smaller than the late-time value used by Efstathiou
et al. (1988) and the small-box calculations of J98 who used f �
0.1. However, it is slightly larger than the values used by Jain &
Berchinger (1998) who used an effective value of f = 0.05, and
also the value chosen by J98 for their big-box simulations, f �
0.038. We ran a few test simulations in which f was varied, and
we believe that the results quoted here are not sensitive to the exact
value adopted.

For the initial particle load, a combination of ‘quiet’ starts and
‘glass’ configurations was used. The quiet starts were produced
by simply placing particles on to a uniform grid with spacing of
L/N 1/3. This method gives no contribution to the power spectrum
from particle placement except on scales of the order of half a mesh
spacing (see Section 4). However, grid initial conditions may lead to
unphysical features on very small scales at late times. An example
of this occurs in the warm dark matter simulations of Bode, Ostriker
& Turok (2001), where the population of ‘secondary objects’ that
they find to form by fragmentation of sheets and filaments may ac-
tually be a numerical artefact induced by the grid. An alternative
approach is the glass-like distribution that is obtained when a ran-
dom distribution of particles is evolved with the signs of the N-body
accelerations reversed (White 1993; Baugh, Gaztanaga & Efstathiou
1995). The resultant particle distribution displays no regular pattern,
but is subrandom. By construction, the glass initial conditions are
non-evolving in the absence of perturbations. The glass load was
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generated once, but can be used in many different simulations by
adding in the appropriate displacement field. This was generated
from the initial density field using the approximation of Zel’dovich
(1970). The Fourier modes of the density field were a Gaussian real-
ization, with random phases and amplitudes chosen from a Rayleigh
distribution.

For both the grid and glass methods, particle discreteness on the
smallest scales leads to a spectrum that is comparable to that of the
shot-noise distribution on that scale. Numerical evolution should
proceed until the scales of interest are well above this noise. For
most spectra, memory of the initial small-scale discreteness is only
truly lost after expansion by roughly a factor of 10 (see Section 4.2).

3.1 Self-similar simulations

The normalization of the scale-free power spectra is most simply
specified in terms of the power on the box scale at the epoch when
the expansion factor a is unity,

	2
L(k) = 	2(kb)

(
k

kb

)n+3

, (23)

where kb = 2π/L . The benefit of normalizing the spectrum in this
way is that the box-scale power is directly related to the error induced
through omitting modes with wavelength above L, and so the effects
can be monitored (see Section 3.3).

Table 1 displays all relevant simulation parameters for the scale-
free runs. A large degree of non-linearity was achieved for all of the
simulations and the n = −1 and −1.5 calculations were completed
to the specified level of normalization. The n = 0 calculations were
halted after the cube had expanded by roughly a factor of 25, due
to the intense demands on the CPU time from performing the PP
part of the calculation. Also, the n = −2 calculations were halted
after a similar factor of growth; this was due to the problems of
finite-volume effects, which we discuss in detail in Section 3.3.

Figs 1 and 2 provide a visual account of the growth of structure in
the four models. We show three epochs from the four different mod-
els: the initial conditions, an intermediate epoch and the final output
epoch. The n = −2 simulations display a number of large-scale fluc-
tuations that collapse to form large filaments and groups, whereas
the n = 0 simulations are characterized by a large number of tightly
bound objects and a paucity of large-scale filamentary features, in
accordance with the results of Efstathiou et al. (1988). Fig. 1 also
compares the glass start to the grid starts. In the glass start no fea-
tures other than the prescribed fluctuations are observed, whereas
the grid start shows faint lattice patterns that are still observable in
the voids at the final epoch.

Table 1. Parameters of the 2563 particle, scale-free simulations. The r1 simulations represent glass initial conditions and r2 simulations are
grid starts.

Simulation ε/L 	2(kb , a = 1) ainitial afinal Time-steps Energy error Output values of a

n = −2 r1 0.00025 0.133 0.025 0.62 831 0.04 per cent 0.025, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.62
n = −2 r2 0.00025 0.133 0.025 0.55 904 0.04 per cent 0.025, 0.1, 0.2, 0.3, 0.4, 0.5, 0.55
n = −1.5 r1 0.00023 0.046 0.010 0.96 991 0.16 per cent 0.01, 0.25, 0.315, 0.4, 0.5, 0.63, 0.794, 0.96
n = −1.5 r2 0.00023 0.046 0.010 1.00 915 0.16 per cent 0.01, 0.25, 0.315, 0.4, 0.5, 0.63, 0.794, 1.0
n = −1 r1 0.00023 0.017 0.010 0.83 991 0.31 per cent 0.01, 0.25, 0.315, 0.4, 0.5, 0.63, 0.794, 0.83
n = −1 r2 0.00023 0.017 0.010 1.00 815 0.31 per cent 0.01, 0.25, 0.315, 0.4, 0.5, 0.63, 0.794, 1.0
n = 0 r1 0.00025 0.003 0.025 0.66 1443 0.50 per cent 0.025, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.66
n = 0 r2 0.00025 0.003 0.025 0.50 1239 0.50 per cent 0.025, 0.1, 0.2, 0.3, 0.4, 0.5

3.2 Power-law open and flat simulations

At late times the amplitude of the non-linear power spectrum is
very sensitive to the density of the Universe, and strongly modu-
lates the amplitude of the non-linear clustering signal. This effect
is important to quantify if one wishes to construct general models
for evolving non-linear power spectra. We investigated this density
dependence by performing a further series of high-resolution 2563

particle, simulations for open universes where � = 0.2 at the final
epoch and for flat universes where � = 0.26 and � = 0.74 at the
final epoch. The values for the density parameter were selected so
that each full integration would span a large dynamic range in �.
The amplitude of the final box-scale mode was set slightly lower
than in the � = 1 simulations, because of the greater small-scale
non-linearities that are generated in low-density models. For all of
these simulations we have used the glass initial particle load. Table 2
displays all of the relevant simulation parameters.

3.3 The challenge of n → −3

On small scales, the slope of the CDM power spectrum approaches
n � −3, so it is important to understand how such spectra evolve
in the non-linear regime. However, highly negative spectral indices
have proven difficult to simulate (Efstathiou et al. 1988; Jain et al.
1995; PD96; Jain & Berchinger 1998), and this can be attributed to
two main effects.

First, the number of particles must be high enough to simu-
late virialized clusters convincingly. Secondly, the finite size of
the simulation volume means that the longest-wavelength fluctu-
ations that are present are λb = L and kb = 2π/L . The absence of
modes beyond the box scale induces an error in the non-linear spec-
trum, since non-linearity couples Fourier modes together and power
leaks from large to small scales; the importance of this effect in-
creases for increasingly negative spectral indices and dominates as n
approaches −3.

The error in the power spectrum due to these missing modes can
be estimated from the linear power spectrum. We can quantify the
missing variance as follows:

σ 2
miss =

∫ ∞

0

	2
L(k)

dk

k
−

∑ 1

4π

	2
L(k ′)

(�2 + m2 + n2)3/2
, (24)

where the sum is over all integer triples (�, m, n) except (0, 0, 0) and
the wavenumber k ′ = kb (�2 + m2 + n2)1/2. Strictly speaking, both
terms on the right-hand side are divergent for power-law spectra
with n � −3. None the less, if one imposes a sufficiently smooth
cut-off at kcut in the power spectrum, then the difference is well
defined in the limit of kcut → ∞.
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Figure 1. Slices showing the growth of structure in the glass n = −2 simulation (left-hand column) and ‘grid-start’ n = −1.5 simulation (right-hand column).
All of the slices are of thickness L/10. From the n = −2 simulation we show expansion factors a = 0.2, 0.45 and 0.55, and from the n = −1.5 simulation
we show epochs a = 0.25, 0.63 and 1.0. The normalization of the final states in the n = −2 and −1.5 runs were 	2(2π/L , a = 1.0) = 0.133 and 0.046,
respectively.
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Figure 2. Same as in Fig. 1, but this time showing the comoving projection of particles in the glass n = −1 simulation (left-hand column) and glass
n = 0 simulation (right-hand column). From the n = −1.0 simulation we show epochs a = 0.25, 0.63 and 0.83, and from the n = 0 simulation we show
expansion factors of a = 0.1, 0.3 and 0.5. The normalization of the final states in the n = −1 and 0 runs were 	2(2π/L , a = 1.0) = 0.017 and 0.003,
respectively.
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Table 2. Parameters of the 2563 particle, power-law � and open simulations. Epochs include a = 0.025, 0.05,
0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0.

Simulation ε/L 	2(kb) � � ainitial afinal Time-steps Energy error

n = −2 0.00025 0.0479 0.26 0.74 0.025 1.0 1065 0.05 per cent
n = −2 0.00025 0.0479 0.2 0.0 0.025 1.0 965 0.09 per cent
n = −1.5 0.00025 0.0240 0.26 0.74 0.025 1.0 971 0.13 per cent
n = −1.5 0.00025 0.0240 0.2 0.0 0.025 1.0 965 0.13 per cent
n = −1 0.00025 0.0101 0.26 0.74 0.025 1.0 1342 0.28 per cent
n = −1 0.00025 0.0101 0.2 0.0 0.025 1.0 965 0.87 per cent
n = 0 0.00025 0.0003 0.26 0.74 0.025 1.0 1020 0.86 per cent
n = 0 0.00025 0.0003 0.2 0.0 0.025 1.0 967 1.86 per cent

We have estimated σ 2
miss numerically in this way for scale-free

power spectra as a function of n. To about 1 per cent accuracy the
result is given by

σ 2
miss = 	2

L(kb)

3 + n
F(3 + n), (25)

where F(y) = 1 − 0.31y + 0.015y2 + 0.001 33y3 and this expres-
sion is valid for −3 � n � 1. One can check the numerical result,
not only by confirming it is insensitive to the precise value of kcut,
but also for the special case n = 0, where it is easy to see from geo-
metric considerations that the value of F(3) is 3/4π. In the limit of
n → −3 the missing variance is well approximated by the quantity
σ 2

err defined as

σ 2
err = 	2

L(kb)

3 + n
. (26)

So as to ensure that the missing variance does not become significant
for our simulations, we have chosen to adopt the criterion

σ 2
err � 0.04, (27)

for which the large-scale missing modes are safely linear.
It is for these reasons that the relatively low-resolution (com-

pared with modern standards) 323 particle, n = −2 simulation of
Efstathiou et al. (1988) could only reproduce the exact similarity
solution for the power spectrum over a narrow range of expansion.
Also, for the more recent high-resolution 2563 particle, n = −2 sim-
ulation of Jain & Berchinger (1998), the box-scale power for their
last three outputs violates the condition (27), rising to σ 2

err � 0.4 for
the last epoch.

3.4 Simulation error and Layzer–Irvine energy

A test for the global accuracy of the integration of the equations of
motion is to measure how well the Layzer–Irvine energy equation
(Peebles 1980, equation 24.7) is obeyed (Efstathiou et al. 1985). One
way to characterize this is through the change in the Layzer–Irvine
integral, I, divided by the total potential energy W (Couchman et al.
1995):

I = K + W +
∫

(2K + W )
da

a
, (28)

where K is the total kinetic energy. In Tables 1 and 2 we present
the percentage error in each of the simulations. The accuracy of
the integration decreases as the spectral index steepens and as �

decreases, the least accurate integration being that of the open n =
0 simulation, for which the global error at the final epoch was of the
order of 1.8 per cent.

4 M E A S U R I N G T H E P OW E R S P E C T RU M

The Fourier modes of the particle distribution can be determined
exactly using the expression (Peebles 1980)

δk = 1

N

N∑
i=1

eik·xi . (29)

Owing to the periodic boundary conditions, wavenumbers are re-
stricted to be integer multiples of the fundamental mode, with an
upper limit imposed by the finite sampling of the mesh: the Nyquist
frequency,

kNy = π

	x
, (30)

where 	x = L/N m is the mesh spacing and N m is the dimension
of the mesh. The power spectrum can then be estimated through
averaging over all of the modes in a thin shell in k space:

P̂(k) ≡ 〈|δk |2〉 = 1

m

m∑
i=1

∣∣δki

∣∣2
, (31)

where m is the number of modes to be averaged. This method is
computationally inefficient, with the required CPU time scaling as
MN for M modes. A faster method is to distribute particles on to a
cubic mesh and perform a fast Fourier transform (FFT). However,
the assignment of mass to grid cells introduces some systematic
effects that must be corrected; these issues will be discussed in
detail in Section 4.2.

In the case of a three-dimensional (3D) particle distribution, the
task soon becomes memory limited, a 5123 FFT requiring roughly
0.5 Gbyte for a ‘real–real’ transform and 1 Gbyte for a ‘complex–
complex’ transform. A solution to this problem was proposed by
J98; we now detail this method, since it is critical for the present
paper.

4.1 Chaining the power

Consider a one-dimensional discrete density field δ(x), which is
periodic over a length-scale L and which has a discrete Fourier
transform given by equation (29). If we partition the density field
using a coarse mesh with M grid cells, then the density at the point
x can be described by the relation

δ(x) = δ(x ′ + j L/M), (32)

where x ′ is the position of the particle in its grid cell and j labels the
cell. If we now map all of the grid cells into one cell, and then the
reduced density field, which is now periodic on the scale L/M , is
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δr (x ′) =
M−1∑
j=0

δ(x ′ + j L/M). (33)

The discrete Fourier transform of this reduced density field is then,

δr
k = 1

N

N∑
i=1

exp(ikx ′
i ) = 1

N

N∑
i=1

exp[ik(xi − j L/M)]. (34)

Provided that the k-modes are integer multiples of the new funda-
mental mode, k = � 2π/(L/M), then the last term in the exponential
is a multiple of 2π, so the modes of the reduced field are equivalent
to the modes of the true field. There is, however, a reduction in the
number of available modes, since the smaller volume of the coarse
mesh gives a lower density of states.

4.2 Numerical effects on the power

There are three important numerical effects that can modify the ‘ob-
served’ power spectrum from the true non-linear signal: discreteness
effects, charge assignment and force softening.

4.2.1 Discreteness effects

For a random distribution of particles with no imposed clustering,
the power does not vanish. This result can be deduced by splitting
3D space into a large number of cubic cells, so that the occupation
number of each cell is either ni = 0 or 1 (Peebles 1980). On comput-
ing the expectation of the power spectrum, we obtain the shot-noise
spectrum〈 |δk |2

〉 = 1

N
, (35)

which in dimensionless form is written as

	2
shot = 4π

N

(
k

kb

)3

. (36)

This leads us to write the true power spectrum, in the limit of large
N as (Peacock & Nicholson 1991)

	2
true(k) = 	2

obs(k) − 	2
shot, (37)

where 	2
obs is the observed power from equation (31).

However, this correction is invalid for the glass and grid starts
discussed in Section 3. To determine the appropriate correction for
these schemes we directly computed the power spectrum of the
initial conditions and then used these empirical spectra to construct
a simple correction model. In Fig. 3 (bottom) we show the raw
power spectrum of the glass particle load for the initial conditions
and two subsequent epochs from the n = −2 simulation. The glass
power spectrum is characterized by a two-power-law spectrum: on
intermediate scales the spectrum is steep, roughly the n =4 ‘minimal
slope’ (see Section 28 of Peebles 1980) and at smaller scales this
breaks to give a shot-noise spectrum. Furthermore, the bottom panel
of Fig. 3 shows that the discreteness spectrum does not appear to
evolve; we can therefore use the initial conditions to determine a
discreteness correction that can be applied to correct the observed
power at all subsequent epochs. This correction can be modelled
as a transition between shot noise on small scales and the almost
minimal spectrum on intermediate scales:

	2
glass =

[(
	2

shot

)−1/α + (
	2

min

)−1/α
]−α

, (38)

where α = 0.3 and 	2
min = (Ak/kb)β , with best-fitting values A =

0.0062 and β = 6.8.
For the grid, or ‘quiet’ start, the issue of a discreteness correction is

fairly subtle, since there is initially no power added to the distribution

Figure 3. Top: the glass-discreteness-corrected (squares) and uncorrected
power spectrum (stars) of the glass n = −2 simulation at an epoch a = 0.55.
We show the linear fluctuation spectrum (dashed line), which demonstrates
that the box scale mode is still linear, the non-linear spectrum according to
the scaling formula of PD96 (thin solid line), a shot-noise spectrum (dot-
dashed line) and our two power-law discreteness model outlined in the text
(thick solid line). Bottom: three epochs from the early stages of the same n
= −2 simulation. From bottom to top epochs are a = 0.025 (squares), 0.1
(circles) and 0.3 (stars). This demonstrates that the discreteness spectrum
does not evolve and also that the linear spectrum has been correctly estab-
lished early on. Again, the lines are as in the top panel, with the thick solid
line representing our fit to the discreteness spectrum.

by particle placement except on the scales of the Nyquist frequency
of the mesh. However, as the simulation evolves under gravity, the
sparseness of particles on small scales forms a power spectrum sim-
ilar to a shot-noise term on those scales. At late times this can be
remedied by subtracting the Poisson spectrum from the raw power,
since the large- and intermediate-scale modes in the evolved dis-
tribution are of higher amplitude than the shot-noise spectrum. At
early times, when the true power is of relatively low amplitude, this
approach is incorrect. We avoid the problem by excluding points for
which the amplitude is below the Poisson spectrum on the equivalent
scale.

Fig. 4 (top) compares the uncorrected power spectra for the glass
and grid starts measured from the n = −2 simulations at two epochs
a = 0.4 and 0.55. We observe that the non-linear loci defined by the
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Figure 4. Top: comparison of discreteness-uncorrected power spectra mea-
sured from the quiet start (squares) and glass start (stars) n = −2 simulations
at epochs a = 0.4 and 0.55. Line styles are as in Fig. 3. Bottom: comparison
of discreteness-corrected power spectra for the same outputs from the two
simulations.

data for these two simulations are consistent and show no memory
of the initial particle load. The only noticeable discrepancy between
the two simulations is the difference in large-scale power; this arises
because the simulations are independent realizations. Fig. 4 (bottom)
contrasts the discreteness-corrected spectra; this shows that consis-
tent final results are obtained through simulating with grid or glass
initial conditions.

4.2.2 Mass assignment

The assignment of mass on to the FFT mesh produces a finite sam-
pling error of the true density field. This problem was investigated
for power spectra by Baugh & Efstathiou (1994), who proposed that
equation (37) for the true field should be modified to

	2
true(k) = 	2

obs(k) − 	2
disc(k)

w(y)
; y = k/km, (39)

where w(y) is the Fourier transform of the mass assignment win-
dow function, 	2

disc(k) is the appropriate discreteness correction
and km = 2π/	x is the wavenumber associated with the intermesh
spacing 	x. However, we believe that there is a small flaw in their
method. Any discreteness correction should be made subsequent to

the correction due to mass assignment, since the discreteness cor-
rection accounts for the representation of a continuous field with a
point-like distribution. We therefore implement the correction as

	2
true(k) = 	2

obs(k)

w(y)
− 	2

disc(k); y = k/km. (40)

Several schemes exist for transferring mass on to the Fourier
mesh. The simplest scheme is the nearest grid point (NGP), which
assigns all of the mass to the closest mesh point. More sophisticated
methods such as cloud-in-cell (CIC) and triangular-shaped-cloud
(TSC) attempt to smear the mass across a number of mesh points.
We have adopted the TSC scheme to assign particles to the mesh.
However, the detailed correction is unimportant when using the
chained-power method of J98. Results at high k can be obtained
either by making substantial binning corrections to the main FFT
mesh, or by moving to a submesh of higher resolution. In practice,
we make this transition before the corrections from binning become
significant. Finally, Baugh & Efstathiou showed that, even after
correcting for the window function, the power is affected by aliasing
close to the Nyquist frequency. Again, when following the method
described in Section 4.1, aliasing errors can be avoided by only
using modes that are a safe distance from the Nyquist frequency of
a given (sub)mesh (a factor of 2, in practice).

4.2.3 Force softening

The softening of the Newtonian force in the PP part of the N-body
calculation (described in Section 3) induces an error in the inte-
gration of particle trajectories for close pairs. By considering the
fractional error in the softened force from the true Newtonian force,
we can impose some constraints on the small-scale cut-off, below
which numerical effects dominate the clustering in our simulations.
For our spline-kernel force softening, we expect numerical effects
to suppress the true power on scales of a few times the softening
length. This corresponds to k/kb ∼ 1700.

The simplest way to discriminate between the true non-linear
solution and numerical artefacts is to use the self-similar evolution
of the scale-free simulations. Since the numerical features are of
fixed comoving length, the true density field will scale under the
transformations that were described in Section (2.4), whereas the
numerical effects do not. We provide evidence for this in Section 5.

5 N U M E R I C A L R E S U LT S

5.1 Similarity solution

Fig. 5 shows the data for the four scale-free models in the HKLM
form: non-linear power on the non-linear scale plotted as a function
of the linear power on the linear scale. For clarity, the data have
been separated from each other by one order of magnitude in the
y-direction, with the n = 0 data untranslated. In order to determine
the linear scale and power that correspond to a given non-linear data
point, we use the non-linear scaling relation (13). Explicitly, given
a non-linear data point kiNL, 	2

iNL, its linear counterpart is

kiL = (
1 + 	2

iNL

)−1/3
kiNL; 	2

iL =
(

kiL

k0

)3+n

, (41)

where k0 is a time-dependent normalization wavenumber defined
by 	2(k0) ≡ 1 and we have assumed an initial power-law power
spectrum for this example.

When plotted in this form the scaling nature of these models is
apparent. The power spectra measured from multiple epochs of the
simulations precisely overlay to define a single locus for each of the
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Figure 5. Non-linear power plotted against linear power (points) for the
four scale-free simulations. For clarity, the data have been separated from
each other by one order of magnitude in the y-direction, with the n = 0 data
untranslated. To determine the linear power given a non-linear data point, the
appropriate linear scale is required. In the HKLM method, this is found using
the transformation kL = [1 + 	2

NL (kNL)]−1/3kNL. The solid line represents
the fitting formula for the Einstein–de Sitter models presented in Appendix
B; the dashed line represents the PD96 fitting formula; the dotted lines are
the fits using the formula of JMW95.

spectral models considered. We confirm the observation of JMW95
and PD96 that different spectral models produce different amounts
of non-linear growth and that the more negative the spectral index
the steeper the locus in this plane. Fig. 5 also shows that the n = −2
simulations have produced a single, tightly defined locus. This was
not observed in previous studies (see fig. 1 of Jain 1997, fig. 1 of
PD96 and fig. 7 of Jain & Berchinger 1998). This failure of scaling
in earlier n = −2 results was probably attributable to saturation of
the box-scale mode.

The evolution in the data can be roughly broken down into three
regimes, the linear, the quasi-linear and the non-linear. General ob-
servations made about these regimes are as follows.

(i) Linear: 	2
NL < 1: the ‘non-linear’ power for all of the models

converges to the linear power.
(ii) Quasi-linear: 2 < 	2

Q < 30: the slope of the f NL curves are
steep. Modelling the data in this regime with a single power law of
the form, 	2

Q ∝ (	2
L)α , we find for n = −2, −1.5, −1 and 0, that the

spectral slopes are α = 3.62 ± 0.03, 3.38 ± 0.05, 3.12 ± 0.06 and
2.96 ± 0.1. This is reasonably close to the suggestion of Padman-
abhan (1996) that 	2

Q ∝ [	2
L]3, although there is a clear trend with

n that is not expected in Padmanabhan’s argument. This departure
from a simple scaling relation is also supported by the results from
loop-correction perturbation theory (see fig. 19 of Scoccimarro &
Frieman 1996). However, it may be argued that extended pertur-
bation theory will fail at such large non-linearities. One caveat is
that it has been suggested that the non-linear scaling relation may
only truly be valid for ξ̄ (Kanekar & Padmanabhan 2001) and not

	2. The small scatter observed in Fig. 5 leads us to believe that this
might not be the case.

(iii) Non-linear: 	2
NL > 30: the f NL curves break away from the

steep evolution that characterized the quasi-linear growth to form
loci that are much shallower. Again, we have performed a simple
power-law fit to the data of each locus. We find that for 	2

NL > 50 the
n = −2 data have a non-linear slope α = 1.05 ± 0.09, and for 	2

NL >

100 the n = −1.5, −1 and 0 data have non-linear asymptotes of α =
0.87 ± 0.04, 1.08 ± 0.04 and 0.99 ± 0.04. This result is interesting
for two reasons. First, within the scatter in the simulations there
appears to be little dependence on the initial spectrum for the non-
linear slope. Secondly, it is in clear contradiction to stable clustering,
which predicts that α = 3

2 . We note that this result agrees with the
findings of Bagla, Engineer & Padmanabhan (1998) for clustering
in two dimensions. However, Fukushige & Suto (2001) found that
the stability on small scales, as measured from peculiar velocities,
was not preserved locally but did apply globally. Our results do not
agree with this.

The shallow slope at high k may be interpreted in terms of the
halo model. Ma & Fry (2000b) derived the following asymptotic
limit for the power spectrum:

	2(k) ∝ kγ ; γ = 18β − ε(n + 3)

2(3β + 1)
, (42)

where β � 0.8β0 is the power law that governs the mass dependence
of halo concentrations: c = r v/r s = (M/M∗)β0 ; r v and r s being the
virial and characteristic radius; and ε is the power-law index that
governs the low-mass tail of the mass function: dn/dM ∝ νε ; ν ∝
1/σ (M). Realistic values for ε and β0 are 0.4 � α � 1.0 and 0.0 �
β0 � 0.5. This is illustrated in Fig. 6, which shows the non-linear
power spectral index γ as a function of the initial spectral index n.
The values of γ were obtained from the above non-linear scaling
relations, 	2

NL ∝ (	2
L)α , using the relationship (PD96)

	2
NL ∝ kγ

NL; γ = 3α(n + 3)

3 + α(n + 3)
. (43)

Figure 6. Non-linear slope of the power spectrum versus the spectral in-
dex. Points are measured from the scale-free simulation power spectra. The
solid line represents the stable-clustering prediction. The dot-dash lines cor-
respond to the predictions of the halo model (Ma & Fry 2000b), with an
assumed ε = 0.4 and 0.0 � β0 � 1.0. The dotted lines correspond to the
halo model prediction with β0 = 0.25 and 0.4 � ε � 1.0.
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We find γ = 0.77, 0.91, 1.26, 1.49 for spectral indices n = −2,
−1.5, −1.0, 0.0. Comparing these measured values against the two
predictions from equation (7) and (42), we see that γ increases with
the steepness of the spectrum, but that the data fall below the stable
clustering prediction. In terms of the halo model, if one assumes ε =
0.4 in accord with Sheth & Tormen (1999), then a strong dependence
of β0 on n is required in order to match the measured data. On the
other hand, if one adopts a value β0 = 0.25 in the middle of the
current measured values, then it is impossible to match the measured
data with any value of ε in the plausible range 0.4–1.0. In summary,
equation (42) seems unable to predict the observed trend of γ (n) in
a natural manner. This is puzzling, since we will show below that
the general ideas of the halo model work very well in describing
our data. One possibility is that equation (42) is valid only on scales
smaller than those probed by current simulations.

Also, in Fig. 5 we contrast our data with the fitting formula of
JMW95 and PD96 (see Appendix A1 and A2 for these formulae).
Both models work reasonably well in the quasi-linear regime, but
with significant discrepancies. The n = −2 results are poorly fit
by both models, with the power being in general underestimated;
PD96 gives the poorer fit, and underestimates the power by up to
a factor 2. The n = −1.5 locus is fairly well characterized by the
JMW function, but underestimated by PD96. The n = −1 results are
fairly well fitted by both models, except around the break between
linear and quasi-linear slopes, where the functions overestimate the
power. Finally, the n = 0 locus is slightly overestimated at the linear
to quasi-linear break by PD96 and underestimated by JMW95. We
have produced a new HKLM fitting formula that accurately fits
the individual Einstein–de Sitter models, the results of which are
shown in Fig. 5 as the thin solid line. The formula is described in
Appendix B.

5.2 Low-density power-law models

In Fig. 7 we show how the non-linear behaviour of the power-law
models deviates from the scale-free solutions (solid lines) as the
background density is lowered. Again, for clarity, the data have
been separated from each other by one order of magnitude in the
y-direction, with the n = 0 data untranslated. In the linear regime,
we again find that the non-linear data follow the linear power. In
the quasi-linear regime, 2 < 	2

NL < 80, as � decreases, the locus
defined by the data increases in amplitude relative to the scale-free
models and the power-law slope steepens. This density-dependent
evolution of f NL in the quasi-linear regime was not apparent in
previous studies (see PD96). The quasi-linear slope steepens as both
n and � decrease. In the non-linear regime, 	2

NL > 80, we again
observe that the slope of f NL is lower than the 3

2 value that is required
by stable clustering.

In Fig. 7, we also compare the data with the density-dependent
fitting formula of PD96. Again, the formula underestimates the shal-
low spectra and slightly overestimates the steeper spectra. However,
the more striking discrepancy is that the formula suppresses the onset
of density-dependent growth until evolution is far into the non-linear
regime, and then tends to overestimate the highly non-linear power.
These discrepancies can in fact be seen in the comparison with the
simulation data used by PD96. However, this library of small (N =
803) simulations was in most cases unable to probe beyond 	2

NL �
200, and so the deviations never became substantial.

The failure of the JMW95 and PD96 functions to accu-
rately model the Einstein–de Sitter data and account for the density

Figure 7. Top: HKLM plot for the open models. Bottom: HKLM plot for
the flat low-density models with a cosmological constant. Again, for clarity,
the data have been separated from each other by one order of magnitude
in the y-direction, with the n = 0 data untranslated. For each model five
epochs are shown, these are: a = 0.6, 0.7, 0.8, 0.9, 1.0, with the lowest locus
for each model corresponding to the a = 0.6 epoch. In terms of the mass
density parameter of the Universe, these epochs correspond to: � = 0.294,
0.263, 0.238, 0.217, 0.200 for the open models and � = 0.619, 0.505, 0.407,
0.325, 0.260 for the � models. As in Fig. 5 the solid lines represent the
fitting formula for the Einstein–de Sitter models presented in Appendix B;
the dashed lines represent fits from the PD96 function.
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dependence of non-linear growth has clearly been shown. On at-
tempting to fit this data set using the standard HKLM-PD96 pro-
cedure we were able to produce an improved formula with an rms
precision of 12 per cent. However, on attempting to integrate the
CDM models into the formulation, we could not find a satisfactory
way to assign an effective spectral index to the models. We therefore
decided to pursue an alternative approach to the problem of general
non-linear fitting functions, which proved to be more accurate.

6 T H E H A L O M O D E L F I T T I N G F U N C T I O N

In this section, we attempt to describe the above non-linear results
by means of concepts abstracted from the ‘halo model’ (Ma & Fry
2000a; Peacock & Smith 2000; Seljak 2000). The basic approach
suggested by the halo model is to decompose the density field into a
distribution of isolated haloes. Correlations in the field then arise on
large scales through the clustering of haloes with respect to each
other and on small scales through the clustering of dark matter
particles within the same halo. This then leads to a total non-linear
power spectrum

PNL(k) = PQ(k) + PH(k), (44)

where PQ(k) is the quasi-linear term that represents the power gen-
erated by the large-scale placement of haloes and where PH (k)
describes the power that results from the self-correlation of haloes.

It is remarkable that such a simple decomposition appears to
work well in describing the main characteristics of the two-point
correlations of the cosmological mass density. It is possibly still
more impressive when one considers that the present formulation
knows nothing of the large-scale filamentary structure of the density
field (which is governed by the correlation function of halo centres).
Indeed, this deficiency was recently pointed out and addressed by
Scoccimarro & Sheth (2002)

In Fig. 8 we directly compare the halo-model calculations (thick
solid lines) with the CDM simulations of J98 (data points, see Sec-
tion 6.4 for a full description). Also shown is the halo-model fitting
function that we present later (thin solid lines, see Appendix C).
The halo model calculations are exactly those of Peacock & Smith
(2000). From the figure, it can clearly be seen that the calculations
qualitatively reproduce the data for all of the models, but that in de-
tail only match SCDM and τCDM closely. Furthermore, when one
attempts to model the power-law spectra the results are worse, with
the n = 0 case being an extreme example (see the later discussion).
Thus our aim in what follows will therefore be to produce a simple
fitting formula that draws on the broad elements of the halo model,
such as the above decomposition of the power spectrum into two
linearly summed terms, but which is of very high accuracy.

6.1 The quasi-linear term

Consider the quasi-linear part first. Seljak (2000), Ma & Fry (2000a)
and Scoccimarro et al. (2001) assumed that one should use linear
theory filtered by the effective window corresponding to the distri-
bution of halo masses, convolved with their density profiles and a
prescription for their bias with respect to the underlying mass field:

PQ(k) = PL(k)

[
1

ρ̄

∫
dMb(M)n(M)ρ̃(k, M)

]2

, (45)

where n(M) dM is the mass function, ρ̃(k, M) is the Fourier trans-
form of the density profile and b(M) is the bias field of dark matter
halo seeds. Peacock & Smith (2000) made the simpler assumption
that the quasilinear term corresponded to pure linear theory:

Figure 8. Comparison of the full halo-model calculation as described in
the text (thick solid lines) with the CDM data (points). Also shown is the
halo-model fitting formula from this work (thin solid lines). For clarity the
four CDM models have been separated from each other by one order of
magnitude in the y-direction, with the τCDM data untranslated.

PQ(k) = PL(k). (46)

This is equivalent to equation (45) on large scales, since in this limit
the filtering effect of haloes is negligible, and we must have

1

ρ̄

∫
dMb(M)Mn(M) = 1. (47)

Neither of these approaches is really satisfactory, since PH comes
to dominate only at scales where linear theory must break down to
some extent (	2

L ∼ 1). Quasi-linear effects must modify the rela-
tive correlations of haloes away from linear theory, irrespective of
whatever allowance may be made for the finite sizes of haloes. One
way of seeing this is via the scaling part of the HKLM procedure:
see equations (13). This shift of scales from gravitational collapse
causes a significant change in power at wavenumbers where 	2

L is of
the order of unity – which is just the point where the filtering effects
of the largest haloes will also start to be important. An alternative
point of view is provided by perturbation theory, which suggests
that quasilinear effects should tend to suppress power for n > −
1.4, but enhance power for more negative indices (e.g. Section 4.2.2
of Bernardeau et al. 2002). Again, such effects cannot be cleanly
separated from the convolving effects of halo profiles. We there-
fore take an empirical approach, allowing the quasilinear effects to
depend on n. Since the philosophy of the halo model is that 	2

Q

should be negligible on small scales, we also build in a truncation at
high k:

	2
Q(k) = 	2

L(k)

[
1 + 	2

L(k)
]βn

1 + αn	
2
L(k)

exp[− f (y)]; y ≡ k/kσ , (48)

where kσ is a non-linear wavenumber, defined below in Section
6.3 αn and βn are spectral-dependent coefficients and f (y) is the
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polynomial y/4 + y2/8, which governs the decay rate. We adopt
this expression for all spectra.

6.2 The halo term

In the halo model the self-halo term is (Peacock & Smith 2000; Ma
& Fry 2000a; Seljak 2000; Scoccimarro et al. 2001)

PH(k) = 1

ρ̄2 (2π)3

∫
dMn(M) |ρ̃(k, M)|2 . (49)

In order to model this we want something that looks like a shot-
noise spectrum on large scales, but is progressively reduced on small
scales by the filtering effects of halo profiles and the mass function.
In terms of the dimensionless power spectrum, a candidate form for
this is

	2′
H(k) = an y3

1 + bn y + cn y3−γn
; y ≡ k/kσ , (50)

where (an, bn, cn, γ n) are dimensionless numbers that depend on
the spectrum. However, with PH defined in this way, the formalism
defined by equation (44) breaks down for steep spectra. The self-
halo power clearly dominates at small k for any spectrum that is
asymptotically n > 0 (e.g. all CDM models). This has been inde-
pendently noted by Sheth & Cooray (2002). The halo model thus
fails to respect low-order perturbation theory in such cases, and this
is a clear defect of the model.

In order to solve this problem, the self-halo power must become
steeper than Poisson on the largest scales. This makes sense if we
think of the halo model as a two-stage process: (i) fragment a uni-
form mass distribution into a set of haloes and (ii) move these haloes
according to a superimposed large-scale displacement field. Since
the first stage conserves mass, the large-scale power spectrum must
approach a ‘minimal’ form with n = 2 (e.g. Section 28 of Peebles
1980). If one also conserves momentum, the minimal spectrum be-
comes even steeper: n = 4. It is a moot point which of these is the
appropriate asymptote for this problem, since the two-stage view
of the halo model is only a heuristic argument. Since we will never
wish to consider spectra that are asymptotically much steeper than n
= 1, it will suffice to force the n = 0 self-halo term to approach n =
2 on sufficiently large scales. This can be achieved if equation (50)
is modified as follows:

	2
H(k) = 	2′

H(k)

1 + µn y−1 + νn y−2
; y ≡ k/kσ , (51)

where we have introduced a term in k4 in order to soften the transi-
tion to the k5 slope. Again, the parameters µn and νn are spectral-
dependent coefficients.

6.3 The non-linear scale

In order to implement these arguments, we need an appropriate gen-
eral definition of the non-linear scale (see Section 2.4), which should
be related to the characteristic mass in the halo mass function. As
studies over many years have shown with increasing accuracy (Press
& Schechter 1974; Sheth & Tormen 1999; Jenkins et al. 2001), the
halo mass function appears to depend only on the dimensionless
fluctuation amplitude

ν ≡ δc/σ (R, t), (52)

where δc is a constant of the order of unity, usually identified with
the linear overdensity for collapse in the spherical model and R is
the effective filter radius. The multiplicity function for haloes, which
is defined as the fraction of mass carried by haloes with mass in a

logarithmic interval, peaks for systems where σ (R, t) is of the order
of unity, and we can therefore choose to define the non-linear scale
in this way:

σ
(

k−1
σ , t

) ≡ 1. (53)

This definition of scale depends on the functional form chosen to
filter the spectrum, but the main effects of changes in this choice
can be absorbed into the fitting coefficients. We therefore take the
convenient choice of a Gaussian filter:

σ 2(RG, t) ≡
∫

	2
L(k, t) exp(−k2 R2

G) d ln k. (54)

With this choice of filter, scale-free spectra have

	2
L(k, t) =

[
k

k0(t)

]3+n

⇒ kσ

k0(t)

=
{

[(1 + n)/2]!

2

}−1/(3+n)

. (55)

6.4 Application to CDM

We have generalized our formula to fit the Virgo and GIF CDM
simulations from J98, which comprise four models: SCDM, τCDM;
�CDM and OCDM. Table 3 lists the cosmological parameters for
these models. The data are publicly available from http://www.mpa-
garching.mpg.de/Virgo/. We have remeasured the power spectrum
for the epochs z = 0.0, 0.5 1.0 2.0 and 3.0 for both the Virgo and
GIF data, the results are presented in Figs 14 and 15 (see below).
The transfer function for these simulations was that of Efstathiou,
Bond & White (1992):

	2(k) = Ak4

{1 + [aq + (bq)3/2 + (cq)2]ν}2/ν
, (56)

where q = k/�, a = 6.4 h−1 Mpc , b = 3 h−1 Mpc and c = 1.7 h−1

Mpc. The normalization constant A is chosen by fixing σ 8.
In order to model these more general curved spectra, we define

an effective spectral index via

3 + neff ≡ −d ln σ 2(R, t)

d ln R

∣∣∣∣
σ=1

. (57)

Since the mass function should depend mainly on the Taylor expan-
sion of σ about the non-linear scale, we also allow dependence on
the spectral curvature:

C ≡ −d2 ln σ 2(R, t)

d ln R2

∣∣∣∣
σ=1

. (58)

Table 3. The cosmological parameters of the N = 2563 CDM sim-
ulations from J98. For these CDM models � ≡ �h is the shape
parameter of the spectrum, σ 8 is the rms fluctuation in spheres of
8 h−1 Mpc and h is the Hubble parameter.

Model � σ 8 � � h L/h−1 Mpc

SCDM 0.50 0.51 1.0 0.0 0.5 239.5
SCDM 0.50 0.6 1.0 0.0 0.5 84.55
τCDM 0.21 0.51 1.0 0.0 0.5 239.5
τCDM 0.21 0.6 1.0 0.0 0.5 84.55
�CDM 0.21 0.90 0.3 0.7 0.7 239.5
�CDM 0.21 0.90 0.3 0.7 0.7 141.3
OCDM 0.21 0.85 0.3 0.0 0.7 239.5
OCDM 0.21 0.85 0.3 0.0 0.7 141.3
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Table 4. The non-linear wavenumber kσ in units of h
Mpc−1, the effective spectral index neff and curvature
C of the spectrum on the non-linear scale, for the four
CDM models listed in the text.

Model kσ neff C

SCDM 0.574 −1.455 0.411
τCDM 0.735 −1.850 0.305
�CDM 0.306 −1.550 0.384
OCDM 0.332 −1.581 0.375

For the case of a Gaussian filter these expressions have the explicit
forms,

3 + neff = 2

σ 2

∫
d ln k	2

L(k, t)y2 exp (−y2)

∣∣∣∣
σ=1

(59)

and

C = (3 + neff)
2 + 4

σ (R)2

×
∫

d ln k	2
L(k, t)(y2 − y4) exp (−y2)

∣∣∣∣
σ=1

, (60)

where y = kRG and where the explicit time dependence of the power
spectrum has been kept to indicate the redshift dependence of the
effective quantities. In Table 4 we list the non-linear wavenumber,
effective spectral index and curvature of the spectrum on the non-
linear scale for the four Virgo (big-box) CDM models, generated
according to the above prescription.

Fig. 9 shows the variation of the effective spectral index (top
panel) and curvature (bottom panel) for the four Virgo CDM models
with the rms fluctuation measured in Gaussian spheres of effective
radius RG. The effective spectral index is quite sensitive to whether
it is defined at σ = 1 or at some other value. However, including
the curvature (which depends much more weakly on σ ), means that
this uncertainty is automatically allowed for. With the non-linear
scale and effective spectral index and curvature as defined through
equations (53)–(58), we find that we can accurately model CDM
spectra. As expected, Fig. 9 shows that the OCDM and �CDM
models are almost indistinguishable: both possess nearly identical
linear power spectra, with only a slight difference in normalization.
The τCDM model has the shallowest effective spectral index, almost
approaching n = −2 and the SCDM model has the steepest, with
n =−1.4. The power-law models that we have simulated encompass
this range of neff. Thus, we are confident that the new fitting function
will be constrained by the appropriate range of spectral models, with
the notable exception of the z > 3 τCDM data for which neff < −2.
These models are the sole basis for the fitting formulae in the n <

−2 regime.
Fig. 10 shows the dependence of kσ (top panel), neff (middle

panel) and C (bottom panel) on the shape parameter and normaliza-
tion of the linear power spectrum for 0.1 � � � 0.8 and 0.4 � σ 8 �
1.2. In all of the models dark contrast represents a higher value. The
parameters neff and C are degenerate under � and σ 8. This degen-
eracy is, however, broken by including the non-linear wavenumber.

6.5 Parameter optimization

We now give the best-fitting coefficients, including the dependence
on cosmology. These coefficients were obtained by optimizing the
formula to fit the scale-free and � < 1 power-law simulations
described here; the CDM simulations of J98 and on large scales
(k < 0.15 h Mpc−1), the results of second-order perturbation theory

Figure 9. Variation of effective spectral index (top panel) and curvature
(bottom panel) as a function of the rms fluctuation in Gaussian spheres of
radius RG, for the four cosmological models considered. Note the lower σ 8

values that corresponded to the big-box simulations have been assumed for
the SCDM and τCDM models.

(calculated using the formulae of Lokas et al. 1996). Owing to the
fact that numerical simulations are susceptible to sampling variance
on large scales, analytic perturbation theory results were preferred.
In the halo model the cosmology dependence arises in a subtle way.
To the extent that the mass function depends only on ν (when ex-
pressed as a function of R) and that δc has no strong cosmology
dependence, the mass function for a given spectrum is also inde-
pendent of cosmology. Therefore, the only effect on the halo power
spectrum should be through the sizes of haloes; these depend on
cosmology because haloes that collapse at high redshift are smaller.
Collapse redshift is a function of mass and cosmology (see, e.g.,
Appendix C of Peacock & Smith 2000). High-mass haloes always
have zc � 0; these thus filter the large-scale part of the spectrum
in a cosmology-independent way. Conversely, low-mass haloes are
important at high k, and these do depend on cosmology, which alters
the effective scale at which filtering occurs. However, there appears
to be no simple way to implement such a complicated dependence
into the fitting procedure. We therefore insert empirical functions of
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Figure 10. Dependence of the non-linear wavenumber kσ (top panel), ef-
fective spectral index neff (middle panel) and curvature parameter C (bottom
panel) on the shape parameter � and normalization σ 8 of the linear power
spectrum. The parameters neff and C are degenerate under � and σ 8. This
degeneracy is, however, broken by the non-linear wavenumber.

Figure 11. Top: non-linear power ratioed with the linear power as a function
of wavenumber scaled in terms of the normalization wavenumber k0, where
	2(k0) = 1. The data points are for the scale-free simulations; the solid
lines represent the fits from the new halo-based formula in Section 6.5; the
dotted lines are PD96 fits. Bottom: the goodness of the new fit. The y-axis
represents the ratio of the observed non-linear power to non-linear power
predicted by the halo-based fitting function. The x-axis shows the observed
non-linear power.

� into the procedure. Also, motivated by the findings of Sec-
tion 5, we allowed the power-law indices that govern the quasi-linear
regime to be density dependent.

The prescription that was found to work best is given in Appendix
C. Code to evaluate the fitting function can be downloaded from the
web address listed in the abstract. Note that the above coefficients
were obtained by fitting the data over a restricted range of scales.
The scale-free data were constrained to have k/kσ > 0.3. The open
and � data were constrained to lie in the range: (4.0 < 	2

L < 15.0)
for n = −2; (0.3 < 	2

L < 15.0) for n = −1.5; (0.3 < 	2
L < 20.0)

for n = −1; (0.3 < 	2
L < 25.0) for n = 0. The CDM data were

fitted under the constraints: k > 0.3 for the big-box data and to k >

0.5 h Mpc−1 for the higher-resolution small-box calculations; the
non-linear power must be 10 per cent greater than the discreteness
correction, equation (38). On larger scales k < 0.15 h Mpc−1, the
formula was calibrated to the results of second-order perturbation
theory.

In Fig. 11 we compare our new halo-based fitting function with the
scale-free simulations. The new model clearly reproduces the data
to a high degree of accuracy. Also, it is important to note that when
the data are plotted in this way the scaling nature is again apparent
and the departure from stable clustering, which is indicated by the
deviation away from PD96 for k/k0 > 10, is pronounced.
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Figure 12. The top and bottom panels are similar to Fig. 11, but this time
points represent open model data. Five epochs are shown; these are a = 0.6,
0.7, 0.8, 0.9, 1.0. In terms of �, these epochs correspond to � = 0.294,
0.263, 0.238, 0.217, 0.200. The thick solid line represents the new halo-
model-based fitting to the scale-free data.

In Figs 12 and 13 we compare the new halo-based model with
the power-law data for � < 1 and � + � = 1. For all of the models
the inclusion of the functions f 1, f 2 and f 3, seems to well repro-
duce the observed density-dependent growth. The only significant
discrepancy is for the n = −2 open data, where the power is under-
predicted in the quasi-linear regime.

In Figs 14 and 15 we compare the model with the CDM data.
Again, the model does exceptionally well at reproducing all of the
data over the range of scales where we are confident that numerical
effects are unimportant. In particular, the OCDM and τCDM pre-
dictions are very significantly improved using the new prescription.

Having demonstrated the success of the halo fitting function on
small scales, we next consider the large scales. We assess this using
the predictions derived from second-order perturbation theory (see
Baugh & Efstathiou 1994). Fig. 16 shows the ratio of non-linear to
linear power for four CDM models. The current models match per-
turbation theory for k < 0.1 h Mpc−1, but deviations exist at higher
k. These plausibly reflect a genuine breakdown of perturbation the-
ory, since the model was required to match perturbation theory as
well as possible for k < 0.15 h Mpc−1, and yet the fit is breaking
down slightly before this upper limit. Both the halo fitting function
and PD96 agree well in this range.

7 C O N C L U S I O N S A N D D I S C U S S I O N

In this paper we have presented a set of high-resolution, 2563 par-
ticle, scale-free N-body simulations, designed to investigate self-

Figure 13. The top and bottom panels are similar to Fig. 11, but this time
points represent � model data. Four epochs are shown; these are a = 0.7,
0.8, 0.9, 1.0. In terms of �, these epochs correspond to � = 0.505, 0.407,
0.325, 0.260. Again, the thick solid line represents the fit to the scale-free
data.

similar gravitational clustering and, in particular, the effects of
non-linear evolution. We have also performed a further series of
numerical simulations, with the same resolution, to explore how the
evolution of clustering depends upon the background density of the
universe. Together, these simulations represent the best calculations
that exist to date for the set of models explored, with a factor 512
improvement in mass resolution over the ground-breaking work of
Efstathiou et al. (1988).

We verified that the final output power spectra were robust by
considering grid and glass particle loads. However, at early times
the problem of discreteness correction is simpler to handle if a glass
start is applied; we have described a detailed method for correcting
the clustering signal in this case. We have implemented the power
spectrum estimation technique of J98, which allowed us to probe
high spatial frequencies without aliasing effects or errors due to
mass assignment to the Fourier mesh. The simulation results may
be summarized as follows.

(i) Scale-free simulations with 0 < n < −2 show self-similarity
under the scaling k0(a) ∝ a−2/(n+3). This conclusion is in agreement
with the results of Efstathiou et al. (1988) and Jain & Berchinger
(1998).

(ii) In the quasi-linear regime, the power spectrum is charac-
terized by a steep power law. The exact slope depends upon the
spectral index n of the input spectrum and the value of �, the slope
steepening as n becomes more negative and as � is reduced.
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Figure 14. Power spectra for the four Virgo CDM simulations (J98) in large cosmological volumes, L = 239.5h−1 Mpc. Each panel shows the evolution
of structure with redshift. The data points correspond, from low to high, to epochs z = 0, 0.5, 1.0, 2.0 and 3.0. Note that only those points with a measured
power above the discreteness spectrum are plotted. The solid line represents the new halo-model-based fitting procedure, with dotted lines representing the
decomposition into the self-halo and halo–halo terms; the dashed line is the PD96 fit.

(iii) The observed non-linear asymptote of the Einstein–de Sitter
simulations was found to be inconsistent with the 	2

NL ∝ (	2
L)3/2

prediction of stable clustering. A shallower slope with 	2
NL ∝ (	2

L)1

is preferred. This result makes sense in terms of the halo model:
calculations using the extended Press–Schechter apparatus show
that haloes will tend to merge with systems of similar mass to their
own (Lacey & Cole 1993). Mergers of this kind will disrupt the
virial equilibrium of the system, violating the basic assumption that
underlies stable clustering. However, if this process were rare then
stable clustering could be upheld in a statistical sense.

(iv) The non-linear fitting formulae of PD96 and JMW95 failed
to reproduce the n = −2 results and were only marginally successful
at reproducing the steeper spectra. The low-density power-law data
were poorly fit by PD96.

(v) For the � < 1 simulations, it is interesting to consider how
the non-linear slope changes with density. In the non-linear limit
equation (C4) (Appendix C) becomes

	2(k) ∝ k[3( f1−1)+γn ]. (61)

For a given n, f 1 increases as � decreases, and so the power-law
slope steepens. This result supports the idea that small-scale cluster-
ing is more closely related to the emergence of the internal density
structure through the continual accretion and merger of haloes. The
reasoning is as follows: for a low-density universe mergers are less
frequent and so haloes have more time to virialize. This means that
stable clustering may be considered to be a better approximation for
these systems. From the arguments in Section 1 and 5, this would
then be manifest as a steepening of the non-linear slope.

In the second part of this paper, we proposed an improved fitting
function for mass power spectra to replace the much-used PD96
formula. We have adopted a new approach to fitting power spectra,
based upon a fusion of the halo model and an HKLM scaling. The
method was generalized to fit more realistic curved spectra, by in-
troducing two new parameters, neff the effective spectral index on
the non-linear scale, and the spectral curvature, C. We found that
the halo model as previously envisaged in the literature fails to ap-
proach linear theory on large scales for n � 0. We have argued that
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Figure 15. Same as for Fig. 14, but this time for the smaller-box GIF simulations.

this should be cured by changing the self-halo power from n = 0
to 2 on large enough scales, and we have shown empirically that
this approach allows an accurate description of a very wide range
of power spectrum data. Our new fitting formula reproduced the
scale-free power spectrum data and also the CDM results of J98
with an rms error of better than 7 per cent. This is to be preferred to
the widely used PD96 prescription, and should be useful for a va-
riety of cosmological investigations. In particular, our preliminary
investigations show that the present formalism should cope natu-
rally with spectra containing a realistic degree of baryonic features
(e.g. Meiksin, White & Peacock 1999).

The halo model provides a novel way to view structure formation,
and has yielded useful insights into the origin of non-linear aspects
of galaxy clustering. This work has concentrated on the low-order
statistics of the density field, but it is also possible to consider higher-
order statistics such as the bispectrum. This three-point function in
Fourier space probes the shapes of large-scale structures that are
generated by gravitational clustering. No shape information is in-
cluded in the current formalism, so it will be interesting to see how
well the model can account for higher-order statistics. Initial results
in this direction (Scoccimarro et al. 2001) seem to be promising.

In general, the important question is the extent to which the halo
model can encapsulate the phase information in the density field,
since fields with identical power spectra can possess completely
different real-space distributions (e.g. Chiang & Coles 2000). The
halo model will inevitably fail to encompass these details of the
density field in full, although it may still offer useful insights. How-
ever, at the two-point level, we have shown that the model is far
more than an educational device, and it can be used as a tool for a
high-precision description of the evolution of the dark matter power
spectrum.
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A P P E N D I X A : H K L M F I T T I N G F U N C T I O N S

A1 The JMW95 function

The JMW95 function was designed to model the n dependence of the
non-linear evolution of scale-free power spectra. The formula was
also used to model � = 1, CDM-like models through the adoption
of an effective spectral index; see equation (14). JMW’s formula
described their numerical data with an rms accuracy of 15–20 per
cent, but for our higher-resolution scale-free data the fit is much
worse, having an rms error of 56 per cent. Their formula is

	2
NL(kNL)

B(n)
= fJMW

[
	2

L(kL)

B(n)

]
, (A1)

where B(n) is a constant which depends upon the spectral index n
and where f JMW(y) remains independent of n. The explicit forms
are

B(n) =
(

3 + n

3

)1.3

(A2)

and

fJMW(y) = y

(
1 + 0.6y + y2 − 0.2y3 − 1.5y3.5 + y4

1 + 0.0037y3

)1/2

, (A3)

where y ≡ 	2
L(kL)/B(n).

A2 The PD96 function

PD96 performed a similar study to JMW95, but extended the set
of cosmological models to include � < 1 open and flat universes.
They also improved on JMW95 by including CDM data in the op-
timization procedure and by proposing that the effective spectral
index would vary continuously with scale: equation (15). They re-
ported that their fitting formula described their simulation data to
an accuracy of about 14 per cent, but it describes our complete data
set with an rms error of 54 per cent. The PD96 fitting formula is

fPD(y) = y

{
1 + Bβy + (Ay)αβ

1 + [(Ay)αg3(�, �)/(V y1/2)]β

}1/β

, (A4)

where y ≡ 	2
L(kL). B describes a second order deviation from linear

growth; A and α parametrize the power law that dominates the func-
tion in the quasi-linear regime; V is the virialization parameter that
gives the amplitude of the f NL ∝ y3/2 asymptote; β softens the tran-
sition between these regions; g(�) is the density-dependent growth
factor of Carroll, Press & Turner (1992), which is the ratio of the
linear growth factor to the expansion factor. This has the functional
form

g(�) = D(a)

a
= 5

2
�[�4/7 − � + (1 + �/2)(1 + �/70)]−1.

(A5)

The best-fitting parameters were

A = 0.482(1 + n/3)−0.947

B = 0.226(1 + n/3)−1.778

α = 3.310(1 + n/3)−0.244

β = 0.862(1 + n/3)−0.287

V = 11.55(1 + n/3)−0.423. (A6)

A P P E N D I X B : N E W H K L M F I T S
TO T H E P R E S E N T DATA

We have performed a non-linear least-squares fitting to the individ-
ual scale-free loci (see Fig. 5) using a single formula. The individual
fitting functions are accurate to �9 per cent. The formula is

fEdS(y) = y

[
1 + y/a + (y/b)2 + (y/c)α−1

1 + (y/d)(α−β)γ

]1/γ

, (B1)

where y ≡ 	2
L(kL) and the relevant parameters for each n are pre-

sented below:

n a b c d α β γ

−2 3.138 0.358 0.527 0.940 8.247 0.508 0.330
−1.5 2.710 0.710 0.919 1.852 0.707 0.647 0.332
−1 10.37 1.115 1.403 2.873 6.655 0.697 0.366
0 29.26 1.394 1.941 3.753 6.547 0.847 0.351

A P P E N D I X C : T H E H A L O M O D E L
F I T T I N G F U N C T I O N

The halo model decomposes the power into a sum of two contribu-
tions:

	2
NL(k) = 	2

Q(k) + 	2
H(k). (C1)

These are given separately by

	2
Q(k) = 	2

L(k)

{
[1 + 	2

L(k)]βn

1 + αn	
2
L(k)

}
exp [− f (y)], (C2)

where y ≡ k/kσ and f (y) = y/4 + y2/8; and

	2
H(k) = 	2′

H(k)

1 + µn y−1 + νn y−2
, (C3)

where

	2′
H(k) = an y3 f1(�)

1 + bn y f2(�) + [cn f3(�)y]3−γn
(C4)

and y ≡ k/kσ .
The parameters of the spectrum are defined via Gaussian filtering:

σ 2(RG) ≡
∫

	2
L(k) exp

(−k2 R2
G

)
d ln k. (C5)

In these terms,

σ
(

k−1
σ

) ≡ 1. (C6)

The effective index is

3 + neff ≡ − d ln σ 2(R)

d ln R

∣∣∣∣
σ=1

(C7)

and the spectral curvature is

C ≡ −d2 ln σ 2(R)

d ln R2

∣∣∣∣
σ=1

. (C8)

Allowing (an, bn, cn, γ n , αn , βn , µn , νn) to vary as a function of
spectral properties, the following coefficients fit our simulation data
and the CDM simulations of J98 to an rms precision of 8.6 per cent
(very much better than PD96). In particular, the model describes
the �CDM data of J98 extremely well. For redshifts z < 3, the
deviation in power between model and the average of the large-box
and small-box data from J98 is always less than 3 per cent for k <

10 h Mpc−1. This represents a perfect fit with present knowledge,
since the two data sets themselves can differ by at least this much.

C© 2003 RAS, MNRAS 341, 1311–1332



1332 R. E. Smith et al.

Note the use of terms up to n4 in the fit for an; these are required in
order to describe the rapid rise in amplitude of the halo term for n
< −2. For less negative n, the higher-order terms are unimportant.
The coefficients are:

log10 an = 1.4861 + 1.8369n + 1.6762n2 + 0.7940n3

+ 0.1670n4 − 0.6206C ; (C9)

log10 bn = 0.9463 + 0.9466n + 0.3084n2 − 0.9400C ; (C10)

log10 cn = −0.2807 + 0.6669n + 0.3214n2 − 0.0793C ; (C11)

γn = 0.8649 + 0.2989n + 0.1631C ; (C12)

αn = 1.3884 + 0.3700n − 0.1452n2; (C13)

βn = 0.8291 + 0.9854n + 0.3401n2; (C14)

log10 µn = −3.5442 + 0.1908n; (C15)

log10 νn = 0.9589 + 1.2857n; (C16)

and the �-dependent functions are

f1a(�) = �−0.0732

f2a(�) = �−0.1423

f3a(�) = �0.0725

}
� � 1 (C17)

f1b(�) = �−0.0307

f2b(�) = �−0.0585

f3b(�) = �0.0743

}
� + � = 1. (C18)

For models in which � is neither zero nor 1 − �, we suggest
interpolating the functions f 1, etc. linearly in � between the open
and flat cases.
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