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A B S T R A C T

We propose a heuristic model that displays the main features of realistic theories for galaxy

bias. We first show that the low-order clustering statistics of the dark-matter distribution

depend almost entirely on the locations and density profiles of dark-matter haloes. The

quasi-linear mass correlations are in fact reproduced well by a model of independent

randomly-placed haloes.

The distribution of galaxies within the halo density field depends on: (i) the efficiency of

galaxy formation, as manifested by the halo occupation number ± the number of galaxies

brighter than some sample limit contained in a halo of a given mass; (ii) the location of these

galaxies within their halo. The first factor is constrained by the empirical luminosity

function of groups. For the second factor, we assume that one galaxy marks the halo centre,

with any remaining galaxies acting as satellites that trace the halo mass. This second

assumption is essential if small-scale galaxy correlations are to remain close to a single

power law, rather than flattening in the same way as the correlations of the overall density

field.

These simple assumptions amount to a recipe for non-local bias, in which the probability

of finding a galaxy is not a simple function of its local mass density. We have applied this

prescription to some CDM models of current interest, and find that the predictions are close

to the observed galaxy correlations for a flat V � 0:3 model (LCDM), but not for an V � 1

model with the same power spectrum (tCDM). This is an inevitable consequence of cluster

normalization for the power spectra: cluster-scale haloes of given mass have smaller core

radii for high V, and hence display enhanced small-scale clustering. Finally, the pairwise

velocity dispersion of galaxies in the LCDM model is lower than that of the mass, allowing

cluster-normalized models to yield a realistic Mach number for the peculiar velocity field.

This is largely due to the strong variation of galaxy-formation efficiency with halo mass that

is required in this model.

Key words: galaxies: clusters: general ± cosmology: theory ± large-scale structure of

Universe.

1 I N T R O D U C T I O N

The large-scale structure in the distribution of galaxies has long

been assumed to arise from primordial inhomogeneities in the

cosmological mass distribution. The quantitative study of the

evolution of these inhomogeneities is now a mature field, particu-

larly in the case of universes dominated by collisionless cold dark

matter (CDM). Large N-body simulations have established the

clustering properties of the CDM density field, and shown how

they can be understood in terms of simple non-linear scaling

arguments (e.g. Jenkins et al. 1998).

The outstanding challenge is of course the connection with the

galaxy distribution. The Poisson clustering hypothesis would

propose that galaxies are simply a dilute sampling of the mass

field. If this were a correct hypothesis, no CDM universe would be

acceptable, since the correlation functions for these models differ

from the observed galaxy correlations in a complicated scale-

dependent fashion (e.g. Klypin, Primack & Holtzman 1996;

Peacock 1997; Jenkins et al. 1998). Allowing the galaxy density to

be any local function of the mass density does not remove this

problem (Coles 1993; Mann, Peacock & Heavens 1998). It may

well be that CDM models are not a good description of reality, but

the problems with correlation functions are not a very strong

argument in this direction, for the principal reason that the

formation of galaxies must be a non-local process to some extent.

The modern paradigm was introduced by White & Rees (1978):

galaxies form through the cooling of baryonic material in

virialized haloes of dark matter. The virial radii of these systems
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are in excess of 0.1 Mpc, so there is the potential for large

differences in the correlation properties of galaxies and dark

matter on these scales.

A number of studies have indicated that the observed galaxy

correlations may indeed be reproduced by CDM models. The most

direct approach is a numerical simulation that includes gas, and

relevant dissipative processes. This is challenging, but just starting

to be feasible with current computing power (Pearce et al. 1999).

The alternative is `semianalytic' modelling, in which the merging

history of dark-matter haloes is treated via the extended Press±

Schechter theory (Bond et al. 1991), and the location of galaxies

within haloes is estimated using dynamical-friction arguments

(e.g. Kauffmann, White & Guiderdoni 1993, Kauffmann et al.

1999; Cole et al. 1994; Somerville & Primack 1999; van Kampen,

Jimenez & Peacock 1999; Benson et al. 2000a,b). Both these

approaches have yielded similar conclusions, and shown how

CDM models can match the galaxy data: specifically, the low-

density flat LCDM model that is favoured on other grounds can

yield a correlation function that is close to a single power law over

1000 * j * 1; even though the mass correlations show a marked

curvature over this range (Pearce et al. 1999; Benson et al. 2000a).

These results are impressive, yet it is frustrating to have a

conclusion of such fundamental importance emerge from a com-

plicated calculational apparatus. The aim of this paper is therefore

to isolate the main processes that produce the effect, yielding a

simple model for the galaxy distribution that results from a given

density field. Such a model is not a substitute for the full physical

calculations, but it should have pedagogical value, and also be of

practical use in setting up large simulated galaxy surveys, as well

as investigating what range of CDM models can be made con-

sistent with observation. We shall argue that the main features of

the galaxy density field can be understood in terms of a model

where the key feature is the halo occupation number: the number

of galaxies found above some luminosity threshold in a virialized

halo of a given mass. To some extent, this is a very old idea, going

back at least to Neyman, Scott & Shane (1953). More recent

manifestations have emphasized that non-linear mass correlations

are closely related to the density profiles of virialized dark-matter

haloes (Sheth & Jain 1997; Yano & Gouda 1999; Ma & Fry 2000),

and that the clustering and dynamical properties of galaxies may

be affected by an efficiency of galaxy formation that depends on

halo mass (Jing, Mo & BoÈrner 1998; Seljak 2000). The main new

features introduced in the present paper are to apply these

arguments including significant recent revisions to our ideas about

halo density profiles (Moore et al. 1999, hereafter M99), and

especially to argue that the required halo occupation numbers can

be constrained by other data (principally the group luminosity

function). This removes the arbitrary degree of freedom

corresponding to the mass-dependence of the efficiency of galaxy

formation, and allows relatively robust model predictions.

The structure of the paper is as follows. Section 2 summarizes

models for the non-linear density correlations, and shows that

these can be understood quantitatively in terms of the density

profiles of virialized haloes. Section 3 investigates how the corre-

lations are affected by: (i) the occupation number (the number of

galaxies per halo, and how this varies with mass); (ii) the

placement of galaxies within haloes. The first factor appears to

control the bias on intermediate scales; the second determines the

small-scale correlations. We argue that these degrees of freedom

are already constrained by empirical data on galaxy groups.

Section 4 then looks at detailed numerical properties of the galaxy

field in this approximation. The galaxy power spectrum is

reproduced quite robustly in shape and amplitude, independent

of the cosmological model, except on the largest scales. It is also

possible to understand the long-standing problem of the low Mach

number of the observed galaxy distribution. Finally, Section 5

sums up.

2 C O R R E L AT I O N S O F I N D E P E N D E N T

H A L O E S

2.1 Correlation functions

One of the earliest suggested models for the galaxy correlation

function was to consider a density field composed of randomly-

placed independent clumps with some universal density profile

(Neyman et al. 1953; Peebles 1974). Since the clumps are placed

at random (with number density n), the only excess neighbours to

a given mass point arise from points in the same clump, and the

correlation function is straightforward to compute in principle; see

Appendix A for details. For the case where the clumps have a

power-law density profile,

r � nBr2e; �1�
truncated at r � R; the small-r behaviour of the correlation

function is j / r322e; provided 3=2 , e , 3: For smaller values

of e , j(r) tends to a constant as r ! 0: In the isothermal e � 2

case, the correlation function for r ! R is

j�r� � p2B

4rR
� pN

16rR2n
; �2�

where N is the total number of particles per clump (Peebles 1974).

The general result is that the correlation function is less steep at

small r than the clump density profile, which is inevitable because

an autocorrelation function involves convolving the density field

with itself. A long-standing problem for this model is therefore

that the predicted correlation function is much flatter than is

observed for galaxies: j / r21:8 is the canonical slope, apparently

requiring clumps with very steep density profiles, e � 2:4:
Despite this difficulty, we will argue below that this model is

capable of giving a good understanding of the properties of the

cosmological density field. Two small alterations are required to

the discussion so far, replacing the arbitrary power-law clumps

with the realistic density profiles of virialized dark-matter haloes,

and allowing for a dispersion in halo masses. The properties of

dark-matter haloes have been well studied in N-body simulations,

and highly accurate fitting formulae exist, both for the mass

function and for the density profiles. These issues are discussed in

Appendices B and C. Briefly, we use the mass function of Sheth &

Tormen (1999, hereafter ST) and the halo profiles of M99.

According to this work, the density profile of a halo interpolates

between r21.5 at small r and r23 at large r:

r=rb �
Dc

y3=2�1� y3=2� ; �r , rv�; y ; r=rc; �3�

where rb is the background density, rc is some core radius, and the

parameter Dc is a characteristic density contrast. The virial radius,

rv is defined to be the radius within which the mean density is 200

times the background. All these parameters are calculable

functions of the halo mass, and hence of its collapse redshift, as

described in Appendix C. Using these assumptions, it is possible

to perform a realistic updated version of the Neyman et al.

calculation: evaluate the correlations of the non-linear density
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field, neglecting only the large-scale correlations in halo positions.

This is done in the next section.

2.2 Power spectra

An equivalent approach is to calculate the power spectrum for this

model, and this is somewhat simpler in practice. Start by dis-

tributing point seeds throughout the universe with number density

n, in which case the power spectrum of the resulting density field

is just shot noise:

D2�k� � 4p

n

k

2p

� �3

: �4�

Here, we use a dimensionless notation for the power spectrum: D2

is the contribution to the fractional density variance per unit

interval of ln k. In the convention of Peebles (1980), this is

D2�k� ;
ds2

d ln k
� V

�2p�3 4pk3jdkj2 �5�

(V being a normalization volume), and the relation to the

correlation function is

j�r� �
�
D2�k� dk

k

sin kr

kr
: �6�

The density field for a distribution of clumps is produced by

convolution of the initial field of delta-functions, so the power

spectrum is simply modified by the squared Fourier transform of

the clump density profile:

D2�k� � 4p

n

k

2p

� �3

jWkj2; �7�

where

Wk �
�
r�r��sin kr=kr�4pr2 dr�

r�r�4pr2 dr
: �8�

As discussed above and in Appendix C, the realistic density

profiles of dark-matter haloes are assumed to obey the M99

density profile, whose shape is characterized by the `concentra-

tion' rv=rc ± the ratio of virial and core radii. The corresponding

window functions are plotted in Fig. 1.

For a practical calculation, we should also use the fact that

hierarchical models are expected to contain a distribution of

masses of clumps, as discussed in Appendix B. If we use the

notation n(M) dM to denote the number density of haloes in the

mass range dM, the effective number density in the shot noise

formula becomes

1

neff

�
�

M2n�M� dM�
Mn�M� dM

� �2 : �9�

The window function also depends on mass, so the overall power

spectrum is

D2�k� � 4p
k

2p

� �3�
M2jWk�M�j2n�M�d M�

Mn�M� dM
� �2 : �10�

The normalization term
R

Mn(M) dM just gives the total back-

ground density, rb, so there is only a single numerical integral to

perform.

2.3 CDM models

The framework discussed so far should apply to any hierarchical

model, but the case of greatest practical interest is the family of

CDM models. As is well known, these are characterized by a

shape parameter G, which is nearly but not quite Vh when the

primordial index is n � 1 (see e.g. Peacock & Dodds 1994 for a

discussion of different possible definitions for G). The normal-

ization is specified via the variance in fractional density contrast

averaged over spheres of radius R:

s2�R� �
�
D2�k� dk

k
W2

k ; �11�

where Wk � 3�sin y 2 y cos y�=y3; y � kR: The abundance of rich

clusters gives a measurement of the rms in spheres of radius

8 h21 Mpc, on which there is general agreement:

s8 � �0:5 2 0:6�V20:56 �12�
(Henry & Arnaud 1991; White et al. 1993; Viana & Liddle 1996;

Eke, Cole & Frenk 1996). Although quite a range of these para-

meters remains open, we shall focus on two commonly discussed

cases: LCDM �Vm � 0:3; Vv � 0:7; G � 0:21; s8 � 0:9� and

tCDM �Vm � 1; Vv � 0; G � 0:21; s8 � 0:51�: Later, we will

compare with detailed simulations of these models by Jenkins et al.

(1998).

Fig. 2 shows the power spectra for these models, computed

according to the above model of randomly placed haloes. This

turns out to agree very well with the exact non-linear result on

small and intermediate scales. Only for k & 1 h Mpc21 does the

predicted power fall below the exact result. This is only to be

expected, since we have ignored any spatial correlations in the

halo positions. A simple guess for amending this is to add the

linear power spectrum to the power generated by the halo

structure:

D2
tot � D2

random haloes � D2
linear: �13�

The justification for this is that the extra small-scale power

Figure 1. The window function for the halo density profile given by M99.

The profile has r / r23=2 inside a core radius rc, with r / r23 at larger

radii, truncated at the virial radius, rv. The shape of the window function is

determined by the ratio rv/rc; the plotted lines correspond to rv=rc � 2; 4,

8, 16, 32 and 64.
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introduced by non-linear evolution is associated with the internal

structure of the haloes. In practice, this model works extremely

well, giving an almost perfect description of the power spectrum

on all scales. This is a novel way of looking at the features in the

non-linear spectrum, particularly the steep rise between k .
0:5 h Mpc21 and k . 5 h Mpc21;and the flattening on smaller

scales. According to the ideas presented here, the flat small-scale

spectrum arises because haloes have central density profiles rising

as r21.5, but not much faster. The sharp fall in power at smaller k

reflects the cut-off at the virial radii of the haloes that dominate

the correlation signal.

This interpretation is quite robust and independent of the exact

form of the halo density profile used; very similar results are

obtained using NFW haloes with central density profiles r / r21

(see Appendix C), and even adopting the singular isothermal

density profile changes the power spectrum only a little. This is

reasonable, since a power spectrum is equivalent to an

autocorrelation: in this process, the density field is convolved

with itself, so the precise degree of cuspiness of the central parts

of the halo becomes smeared out. This objection does not apply

when we consider galaxy correlations, however: see Section 4.2.

It might be objected that this model is still not completely

realistic, since we have treated haloes as smooth objects and

ignored any substructure. At one time, it was generally believed

that collisionless evolution would lead to the destruction of

galaxy-scale haloes when they are absorbed into the creation of a

larger-scale non-linear system such as a group or cluster. However,

it turns out that this `overmerging problem' was only an artefact of

inadequate resolution (see e.g. van Kampen 2000). When a

simulation is carried out with ,106 particles in a rich cluster, the

cores of galaxy-scale haloes can still be identified after many

crossing times (Ghigna et al. 1998). This substructure must have

some effect on the correlations of the density field, and indeed

Valageas (1999) has argued that the high-order correlations of the

density field seen in N-body simulations are inconsistent with a

model where the density file is composed of smooth virialized

haloes. Nevertheless, substructure seems to be unimportant at the

level of two-point correlations.

The existence of substructure is important for the obvious next

step of this work, which is to try to understand galaxy correlations

within the current framework. It is clear that the galaxy-scale

substructure in large dark-matter haloes defines directly where

luminous galaxies will be found, giving hope that the main

features of galaxy formation can be understood principally in

terms of the dark-matter distribution. Indeed, if catalogues of

these `sub-haloes' are created within a cosmological-sized simu-

lation, their correlation function is known to differ from that of the

mass, resembling the single power law seen in galaxies (e.g.

Klypin et al. 1999; Ma 1999). The model of a density field

consisting of smooth haloes may therefore be an excellent

description of the galaxy field, even though it fails in detail for

the dark matter as a whole. We explore this idea in the following

section.

3 B I A S E D G A L A X Y P O P U L AT I O N S

In relating the distribution of galaxies to that of the mass, there are

two distinct ways in which a degree of bias is inevitable.

(1) Halo occupation numbers. For low-mass haloes, the

probability of obtaining an L* galaxy must fall to zero. For

haloes with mass above this lower limit, the number of galaxies

will in general not scale linearly with halo mass.

(2) Non-locality. Galaxies can orbit within their host haloes, so

the probability of forming a galaxy depends on the overall halo

properties, not just the density at a point. Also, the galaxies can

occupy special places within the haloes: for a halo containing only

one galaxy, the galaxy will clearly mark the halo centre. In

general, we will assume one central galaxy and a number of

satellites.

3.1 Bias parameters

The first mechanism leads to large-scale bias, because large-scale

halo correlations depend on mass, and are some biased multiple of

the mass power spectrum: D2
h � b2�M�D2: The linear bias

parameter for a given class of haloes, b(M), depends on the

rareness of the fluctuation and the rms of the underlying field:

b � 1� n2 2 1

ns
� 1� n2 2 1

dc

�14�

(Kaiser 1984; Cole & Kaiser 1989; Mo & White 1996), where

n � dc=s; and s2 is the fractional mass variance at the redshift of

Figure 2. Density power spectrum computed for the tCDM (top) and

LCDM (bottom) models. The linear spectrum is shown dashed; the solid

line shows the non-linear spectrum, calculated according to the

approximation of Peacock & Dodds (1996). The spectrum according to

randomly placed haloes is denoted by open circles; if the linear power

spectrum is added, the main features of the non-linear spectrum are well

reproduced (filled circles). For reference, the dot-dashed line shows the

APM power spectrum (Maddox, Efstathiou & Sutherland 1996).
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interest. This formula is not perfectly accurate, but the deviations

may be traced to the fact that the Press±Schechter formula for the

number density of haloes (which is assumed in deriving the bias)

is itself systematically in error; see Sheth & Tormen (1999) (ST),

and the discussion in Appendix B.

Note that the bias formula applies to haloes of a given n , i.e. of

a given mass. If we are interested in all haloes above a given mass,

we have to apply the above formula with a weight wi for the ith

halo:

btot �
P

wibiP
wi

: �15�

For a simple `censoring' ± i.e. rejecting all low-mass haloes, but

retaining all higher-mass haloes with a weight proportional to

mass, this would be

btot � 1� 1

F�. n�
�1

n

n2 2 1

dc

dF

dn
dn; �16�

where F�. n� is the fraction of the mass in haloes exceeding a

given n ; dF=dn / exp�2n2=2� according to Press±Schechter

theory. For no censoring, this gives b � 1 exactly, as required; in

general, btot . 1:
Censoring also yields a bias even for Poisson-distributed haloes.

Small-scale correlations arise purely from the correlated pairs due

to the finite extent of the haloes. Haloes of very low mass

contribute no correlated pairs except on very small scales. Thus,

the omission of the censored haloes is simply equivalent to

renormalizing the mean density, and hence scaling the correlation

function. If the fraction of particles surviving censoring is

F�. nmin�, the small-scale correlations are boosted as follows:

j! j=�F�. nmin��2: �17�
In both cases, the natural tendency is for the galaxy distribution to

be positively biased. The only way to achieve large-scale antibias

is to give a greater weight to the haloes with n , 1 ± i.e. the

efficiency of galaxy formation has to be lower in high-mass

haloes. Small-scale antibias can be achieved via the diluting

effects of haloes whose occupation number is N � 1: These

contribute no correlated pairs, and so simply reduce the overall

correlation amplitude. If the fraction of haloes with N � 1 exceeds

the fraction of mass that is censored, the overall correlations will

be lower than those of the mass.

3.2 Constraints from galaxy groups

The number of galaxies that form in a halo of a given mass is a

prime quantity that numerical models of galaxy formation aim to

calculate. However, for a given assumed background cosmology,

the answer may be determined empirically. Galaxy redshift

surveys have been analysed via grouping algorithms similar to

the `friends-of-friends' method widely employed to find virialized

clumps in N-body simulations. With an appropriate correction for

the survey limiting magnitude, the observed number of galaxies in

a group can be converted to an estimate of the total stellar

luminosity in a group. This allows a determination of the All

Galaxy Systems (AGS) luminosity function: the distribution of

virialized clumps of galaxies as a function of their total

luminosity, from small systems like the Local Group to rich

Abell clusters.

The AGS function for the CfA survey was investigated by

Moore, Frenk & White (1993), who found that the result in blue

light was well described by

df � f*��L=L*�b � �L=L*�g�21 dL=L*; �18�

where p* � 0:00126 h3 Mpc23; b � 1:34; g � 2:89; the charac-

teristic luminosity is M* � 221:42� 5 log10 h in Zwicky magni-

tudes. According to Efstathiou, Ellis & Peterson (1988), these are

essentially identical to the BJ magnitudes used in the APM survey,

and we assume this hereafter (using MB to denote absolute

magnitude in either of these bands). One notable feature of this

function is that it is rather flat at low luminosities, in contrast to

the mass function of dark-matter haloes (see the discussion in

Appendix B). It is therefore clear that any fictitious galaxy

catalogue generated by randomly sampling the mass is unlikely to

be a good match to observation. The simplest cure for this

deficiency is to assume that the stellar luminosity per virialized

halo is a monotonic, but non-linear, function of halo mass. The

required luminosity±mass relation is then easily deduced by

finding the luminosity at which the integrated AGS density

F�. L) matches the integrated number density of haloes with

mass .M. The result is shown in Fig. 3. The striking feature of

this plot is that it is highly non-linear: between M �
1013±1014 h21 M(; the halo luminosity rises rather slowly,

corresponding to a declining efficiency of galaxy formation over

this range. Whether or not this is physically reasonable is of

course something that can only be addressed by detailed

calculation, but this is what the data require if CDM models are

to be viable.

3.3 Discreteness issues

Given a total stellar luminosity for a halo, we now need to deduce

the number of galaxies it contains. This is a critical issue, which

contains some subtle points. The number of galaxies to be

assigned to a halo of given total luminosity can be understood

easily enough for a large halo. Suppose that the galaxy luminosity

function is of a universal form fG (a Schechter function, for

convenience). If we catalogue all galaxies down to some minimum

Figure 3. The empirical luminosity±mass relation required to reconcile the

observed AGS luminosity function with two variants of CDM. L* is the

characteristic luminosity in the AGS luminosity function (a Zwicky

absolute magnitude of 221.42 for h � 1�: Note the rather flat slope around

M � 1013±1014 h21 M(; especially for LCDM.
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luminosity Lmin, the number of galaxies found in unit volume is�1
Lmin

fG dL; whereas the total stellar luminosity is
�1

0
LfG dL: The

number of galaxies is therefore obtained by dividing the total

luminosity by an effective luminosity per galaxy:

Leff �
�1

0
LfG dL�1

Lmin
fG dL

: �19�

This effective luminosity is shown as a function of galaxy

sample limit in Fig. 4; clearly, from equation (19), it depends

only on the shape of the galaxy luminosity function, and not on

its normalization.

For large haloes, one would convert M to Ltot as above and

assign an occupation number N � Ltot=Leff : However, this

procedure must fail for small N. If we were to use integer

arithmetic, the assigned occupation number would be N � 0 for

Ltot , Leff : In reality, there must be a non-zero probability of

finding at least one galaxy provided Ltot . Lmin: For the low-mass

haloes, the process must inevitably be stochastic, with some

haloes having N � 0; others N . 0:
In order to understand how to treat this situation, we must use

the observed universe as a guide. Fig. 5 shows the distribution of

galaxy groups, as a function of the number of galaxies they

contain, for two catalogues of groups. These are the CfA groups

(Ramella, Pisani & Geller 1997) and the ESO Slice Project groups

(Ramella et al. 1999). The latter survey is the deeper �BJ , 19:4�
as opposed to the CfA limit of B , 15:5; although the CfA sky

coverage is much larger. We have constructed approximately

volume-limited subsamples from these catalogues by considering

all groups in the radial velocity ranges 8000 , V , 11 000 km s21

(CfA) and 20 000 , V , 40 000 km s21 (ESO). Matching number

densities of galaxies, these samples correspond to approximate

�h � 1� limiting galaxy absolute magnitudes of MB , 219:4
(CfA) and MB , 218:5 (ESO). In both cases, groups are found

with an algorithm similar to friends-of-friends, so we will assume

that these catalogues approximate the distribution of occupation

numbers for haloes down to these luminosity limits.

Results are given only for groups with N $ 3; but what is

striking is that over this range the number of systems falls very

fast as a function of N: approximately

r�N� / N22:7: �20�
This suggests that the mean occupation number must be quite

close to unity, and this can be confirmed because the total space

density of galaxies to the above survey limits is known. We can

extrapolate the above power law to N � 2 in order to estimate the

fraction of galaxies that exist in groups with N $ 2; and in both

cases the answer is almost exactly 0.5: half of all galaxies are

isolated. This will turn out to be important for understanding

small-scale galaxy clustering: such groups contribute no corre-

lated pairs, and merely dilute the overall correlations contributed

by larger groups.

Can such a r (N) dependence be predicted by the Leff recipe

discussed earlier? As expected, simple application of integer

arithmetic to the group luminosity function counting luminosity

in units of Leff grossly underpredicts the number of groups with

N � 1 and N � 2 (see Fig. 5). A detailed solution to this problem

would require a knowledge of what we may term the `conditional

luminosity function', f�LjLG�; i.e. the luminosity function of

those galaxies that reside in groups of total luminosity LG to

LG � dLG: An observational determination of this function is one

of the results to be expected from future generations of redshift

survey, and it can also in principle be calculated by semianalytic

galaxy formation models. In the meantime, we can adopt an

empirical approach to the problem, based on assuming that the

halo occupation number is a monotonic function of its mass. This

must be wrong in detail, but for the present heuristic purpose it

will be interesting to stick with the simplest possible scheme. In

the end, we are interested in calculating the virial radius of the

dark-matter halo in which a given galaxy group resides, and this is

not a strongly varying function of mass; it should therefore be

reasonable to ignore any scatter in mass.

Given this assumption, we can then assign an effective mass to

Figure 4. The effective luminosity associated with galaxies of luminosity

.Lmin (i.e. total luminosity density divided by the number density of

galaxies with L . Lmin�: A Schechter function with a � 1:28 is assumed,

following Folkes et al. (1999); the dashed line shows the effect of a � 1:
In this plot, L* is the characteristic luminosity in the galaxy luminosity

function, as distinct from the AGS L*.

Figure 5. The number density of groups as a function of the number of

galaxies they contain, for approximately volume-limited subsamples of the

CfA and ESO Slice Project group catalogues. The dashed lines show the

relation r�N� / N22:7: The open points show the estimated number

density of `isolated' galaxies, i.e. those that reside in groups with N � 1:

This was derived from the total galaxy number density, minus those in

groups (with an extrapolated contribution for N � 2�: The solid lines show

the prediction of the AGS luminosity function, as discussed in the text.
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a group of given N by simply calculating the integrated number

density of all groups this size or larger, r�$ N�; and equating it to

the integrated halo number density, n�$ M�: The results of this

exercise are given in Fig. 6: N is plotted as a continuous variable,

but integer arithmetic should be applied in practice to obtain the

occupation number corresponding to a halo of given mass. To be

explicit, the occupation number for a halo of given mass is to be

deduced from Fig. 6 by using the curve to deduce N(M) and then

taking the integer part. For example, this prescription yields N � 1

for a LCDM universe for 1011:8 , M , 1012:6 h21 M(:
It is interesting to contrast these results with those of Jing et al.

(1998), who were able to achieve an approximate match between a

LCDM model and the APM clustering, by means of a much

weaker non-linearity in the relation between N and mass:

approximately N / M0:92: However, the critical difference is

that Jing et al. (1998) did not impose a threshold in halo mass;

they allowed all simulation particles to be candidate galaxies, even

single particles that were not included in any halo above their

resolution limit. These low-mass haloes are very weakly clustered,

and dilute the correlation signal from the more massive haloes. As

a result, Jing et al. (1998) did not need a very strong mass-

dependence of the efficiency of galaxy formation in order to

achieve a reasonable clustering amplitude. However, the need for

a mass threshold seems observationally desirable: if L* galaxies

could form in haloes of mass !1012 M(, they would be baryon-

dominated and would not display flat rotation curves. The concept

of a threshold is also particularly important in understanding

voids: they must be devoid of galaxies owing to the modification

of the halo mass function in regions of low large-scale density. For

both these reasons, we believe that our method of predicting

occupation numbers is preferable to the prescription used by Jing

et al. (1998), although they introduced many of the correct ideas.

The occupation numbers shown in Fig. 6 will not be completely

reliable at high masses; we have assumed that the observed power-

law distribution of group sizes continues indefinitely, whereas

there is no evidence for this for N * 20: We therefore prefer to use

the occupation numbers predicted by the AGS analysis at large N.

In practice, the latter occupation numbers are slightly lower for

high-mass haloes than the ones given in Fig. 6. A convenient

approximation that matches smoothly from one to the other is to

replace N from Fig. 6 by N0.92. This gives a recipe that can be used

to generate a mock galaxy sample from any model halo

population, such that the correct group statistics are obeyed.

4 A P P L I C AT I O N T O N U M E R I C A L

S I M U L AT I O N S

4.1 Generation of mock galaxy catalogues

The most direct way to implement the ideas in this paper is to

work with the distribution of haloes found in an N-body

simulation. For this purpose, we have considered the data from

the Virgo consortium (Jenkins et al. 1998), concentrating on the

simulations of V � 0:3 LCDM and V � 1 tCDM universes in

boxes of side 239.5 h21 Mpc. Both have the same shape linear

spectrum �G � 0:21�; with cluster-based normalizations of s8 �
0:9 and 0.51, respectively. We have used a friends-of-friends code,

with a linking length of 0.2 times the interparticle separation, to

generate halo catalogues down to a minimum size of 10 particles.

The masses of such systems are such that they both correspond to

a group luminosity of approximately MB � 219:0; it should

therefore be possible to generate a mock galaxy population down

to this luminosity limit, by following the recipe given earlier.

The different stages of this process are illustrated in Fig. 7 for

the case of LCDM. Panel (a) shows the full mass distribution,

whereas panel (b) shows the mass distribution reconstructed from

spherically symmetric haloes above the lower mass limit

(1011.8 h21 M( in this case). We immediately see one of the

main effects that contribute to bias: there are no haloes in the

voids. This censoring is a purely gravitational effect, and is an

inevitable result of the peak±background split, in which the large-

scale density modulates the mass function. The voids will not be

truly empty, but the halo mass function is shifted to lower masses,

and the galaxy luminosity function must therefore shift to lower

luminosities. Such an effect now seems to be clearly established

observationally (e.g. Grogin & Geller 1999). This censoring alone

would yield a positive bias, as discussed above; this can however

be offset by the non-linear dependence of occupation number on

halo mass, although such an effect is less clear in Fig. 7. The final

galaxy catalogue (panel c) seems to the eye quite similar to a

sparse sampling of the mass (panel d), but their clustering

statistics in fact differ quite markedly, as shown below.

4.2 Galaxy power spectra

Having generated mock galaxy samples, we can now calculate

their power spectra, and see how the above simple bias

prescription has altered their clustering properties with respect

to those of the mass. Again, we shall restrict the analysis to the

LCDM and tCDM models. The results are shown in Fig. 8.

We can first compute the effects of censoring ± i.e. rejecting

low-mass haloes, but otherwise giving each mass particle equal

weight. The resulting power spectra are shown in Fig. 8 as open

circles, and greatly exceed the power spectrum for all the mass, as

expected from the discussion in Section 3.1 (approximately half of

the mass is censored). Since the LCDM mass correlations already

exceed the APM data, this sounds like a fatal blow to that model.

However, the predicted galaxy power spectra are very much lower

that those of the censored mass, with the LCDM model showing

the larger shift. This must reflect the non-linear L±M relation of

Fig. 3; the non-linearity is more extreme for LCDM than for

tCDM, and the relative contribution of high-mass haloes is more

Figure 6. The empirical relation between halo mass and occupation

number required in order to satisfy the observed power-law distribution of

group richnesses. A limit MB � 219 is assumed.
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strongly suppressed in the former model, yielding a stronger

suppression of the clustering signal. The final predicted galaxy

clustering for both models is close to that observed in the APM

catalogue, with a shape close to a single power law. There is a

difference in amplitude, however: the LCDM model shows the

required large-scale lack of bias, intermediate-scale antibias, and

positive bias for k * 10 h Mpc21; whereas the tCDM model

shows positive bias on all scales, especially on small scales, and

exceeds the APM power spectrum by about a factor of 2 for

k * 1 h Mpc21:
These results make qualitative sense in terms of the above

discussion. On large scales, the different normalizations of the two

models make it inevitable that tCDM model will have significant

bias, since galaxy-scale haloes are larger-n fluctuations in this

model (Kauffmann, Nusser & Steinmetz 1997). The lack of a

strong quasi-linear `bulge' at intermediate wavenumbers can be

traced to the diluting effect of isolated galaxies (haloes with

occupation number N � 1�: Finally, the positive bias on the

smallest scales is a direct result of our assumption that all haloes

contain one central galaxy, with others acting as satellites. This

gives a contribution to the pair counts as a function of radius that

automatically follows the shape of the halo density profile, so

that galaxy correlations are not expected to flatten on small

scales. The interesting point is that, for the models shown here,

these effects conspire to yield a galaxy power spectrum that is

close to the observed power-law over almost three decades of

wavenumber.

In contrast to the case of mass correlations, the form of the halo

density profile at small r has a critical influence on the predicted

small-scale galaxy correlations. If r / r2g at small r, then a

similar scaling is expected for j (r), at very small radii where the

pair counts are dominated by pairs between the central galaxy and

the satellites. The observed small-scale angular correlations

suggest g � 1:6±1:8; which is not so different from the M99

value of g � 1:5: However, if the NFW value g � 1 were to turn

out to be correct, there would be no way to understand the small-

scale galaxy correlations in this model. Inverting the argument, the

observed steep small-scale j (r) argues in favour of dark-matter

haloes with rather cuspy cores. This emphasizes the importance of

independent tests of claims that in some cases the dark matter in

a

c

b

d

Figure 7. Stages in generating a mock galaxy sample for a LCDM universe. The slices are 120 h21 Mpc on a side, with a thickness of 1/5 of the side. Density

contrast is log encoded from a value of 0.5 (white) to 10 (black). The panels show, clockwise from top left, (a) the initial mass distribution; (b) the mass

distribution reconstructed from spherical M99 haloes, excluding the non-halo particles; (c) the galaxy catalogue; (d) a random sampling of the mass, with the

same number density as the galaxies.
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clusters has a constant-density core (Tyson, Kochanski &

dell'Antonio 1998).

The reason for the different amplitudes predicted for galaxy

clustering in the LCDM and tCDM models can probably be

traced to the fact that both models are cluster normalized. This

means that rich clusters with observed N , 102 are forced to have

equal abundances and masses. However, the corresponding virial

radius will be smaller in the high-density model: M / r3
vV; so

that rv / V21=3 (the core radius also obeys this scaling, even if

an V-dependent definition of the virial radius is adopted). If we

ignore the slight V-dependence of the concentration, and assume

that the haloes that dominate the correlation signal all obey this

scaling, then the quasilinear correlations will inevitably rise with

V. For example, equation (2) suggests that the power should scale

as V2/3, which predicts a power ratio of 2.2 between V � 1 and

V � 0:3:
Our conclusions thus agree to some extent with those of Benson

et al. (2000a), who found a realistic correlation function for

LCDM, but not for tCDM. However, their detailed conclusions

regarding tCDM are completely different, with very low

clustering predicted, especially on small scales. We believe that

this is because Benson et al. were only able to match the AGS

luminosity function for their LCDM model; if the semianalytic

assumptions were altered so that the tCDM model also matched

observed group properties, we would then expect the predicted

correlation function to be somewhat higher than that for LCDM.

In the end, our prediction for galaxy clustering in the LCDM

model still lies slightly above the APM data. One might wonder if

this could be due to the luminosity limit assumed: we have

calculated results for galaxies brighter than MB � 219; whereas

the APM results apply for a flux limited sample. In principle, the

model proposed here can be used to predict how galaxy clustering

varies with luminosity; however, for the present purposes it is

sufficient to note that, empirically, there is very little dependence

in clustering amplitude on luminosity for MB , 219 (Loveday

et al. 1995). Fainter galaxies (down to MB � 215� show weaker

clustering, but these will receive very small weight in a flux-

limited survey. The APM results will be dominated by galaxies

around L* �MB . 219:7�; this is close to our adopted luminosity

limit, and we do not believe that luminosity effects can be the

cause of the mismatch in clustering amplitude.

In terms of the above discussion, it is clear how a perfect match

could be achieved: the relative contributions of massive haloes

need to be reduced still further. We have carried out some

experiments, and it appears that N for the most massive haloes

M , 1015 h21 M( would need to fall by a factor of about 2. A

shift of this order is arguably allowed by some of the uncertainties

in this analysis, since it can hardly be claimed that the M/L ratios

for rich clusters are yet known to very high precision. Further-

more, any uncertainty in mass feeds through to the cluster s8

normalization of the spectrum, which will affect the predictions.

In any case, we would not wish to claim that the LCDM model

studied here matches the true universe precisely, but there is

gathering evidence that it may be reasonably close (e.g. Wang et al.

2000). We therefore consider it important to have achieved some

understanding of how the necessary scale-dependent bias can

arise.

The results of this section are both good and bad news: it is

satisfying to have some understanding of why galaxy correlations

behave as they do, but it means that the clustering properties of

galaxies on scales where they are easily measured may be of

restricted use in testing cosmological models ± i.e. the amplitude

of the correlations is mainly sensitive to V, rather than to the

detailed shape of the underlying mass power spectrum. This

emphasizes the importance of measurements on scales that are

well into the linear regime, so that something close to linear bias

can be applied.

4.3 Peculiar velocities

Moving beyond correlation functions, the chief longstanding

puzzle concerning the galaxy distribution has concerned the

dynamical properties of galaxies, in particular the pairwise

peculiar velocity dispersion. This statistic has been the subject

of debate, and preferred values have crept up in recent years, to

perhaps 500 km s21 at projected separations around 1 Mpc (e.g.

Jing et al. 1998). The predicted amplitude of peculiar velocities

depends on the normalization of the fluctuation spectrum; if this is

set from the abundance of rich clusters, then Jenkins et al. (1998)

found that reasonable values were predicted for large-scale

streaming velocities, independent of V. However, Jenkins et al.

also found a robust prediction for the pairwise peculiar velocity

Figure 8. The power spectra for galaxy catalogues constructed from (a) the

tCDM model; (b) the LCDM model, using the empirical recipe for the

occupation number as a function of mass. The model predictions are

shown as filled circles; open circles show only the effects of censoring: the

power spectrum of the mass, excluding particles in haloes below the lower

mass limit. The linear spectrum is shown dashed; the solid line shows the

non-linear spectrum, calculated according to the approximation of Peacock

& Dodds (1996). The dot-dashed line shows the APM power spectrum

(Maddox, Efstathiou & Sutherland 1996).
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dispersion around 1 Mpc of about 800 km s21. The observed

galaxy velocity field appears to have a higher `cosmic Mach

number' than the predicted dark-matter distribution (Ostriker &

Suto 1990).

It is clearly of interest to see how this conclusion is affected by

the bias model adopted here. The line-of-sight pairwise peculiar

velocity dispersion (s12, defined in equation 16 of Jenkins et al.

1998) is shown in Fig. 9, where it is apparent that there is a

substantial difference between the properties of dark matter and

galaxies. The main contribution to this effect is the reduced weight

given to more massive haloes of higher velocity dispersion (see

Fig. 6), although there is also a significant contribution from the

assumption that there is one central galaxy, which thus does not

gain any peculiar velocity from the velocity dispersion of its

parent halo. A degree of `velocity bias' is thus an inevitable result

of this model. As with the power spectrum, the final s12 around

1 Mpc is slightly high compared to the figure of around

500 km s21 preferred by Jing et al. (1998), but the main point is

that the general effects discussed here are plausibly the cause of

the low galaxy Mach number.

Again, the results of the simple model seem to be in general

agreement with the results of more detailed semianalytic studies.

Benson et al. (2000b) discuss in considerable detail the velocity

statistics for their LCDM model, which matches well to the

observed galaxy correlations and pairwise peculiar velocities.

Their results contrast with those of Kauffmann et al. (1999), who

performed a semianalytic calculation for the same model, yet

found much larger pairwise velocities. Benson et al. argue

convincingly that this can be traced to the larger occupation

numbers assigned to the more massive haloes by the Kauffmann

et al. calculation. In the end, this emphasizes what has often been

said: the pairwise velocity dispersion is not a very good statistic to

use, since it is rather sensitive to the contribution of the most

massive clusters.

5 S U M M A RY A N D C O N C L U S I O N S

The aim of this paper has been to show that, for all the

sophistication of modern understanding of gravitational instability,

many of the basic features of the cosmological density field can

actually be understood via the model introduced nearly half a

century ago by Neyman et al. (1953). Their view was of a universe

that had fragmented into non-linear haloes, whose internal density

structure determined the observed galaxy correlations. Today, we

would modify this in three ways: (1) the haloes have a spectrum of

masses, and a corresponding variation in density structure; (2) the

haloes are clustered, owing to the large-wavelength part of the

fluctuation spectrum whose small-scale non-linearities generated

the haloes; (3) galaxies do not simply randomly trace the mass

density in the haloes.

There has been a marked recent resurgence of interest in this

basic density-clump paradigm (e.g. Sheth & Jain 1997; Jing et al.

1998; Valageas 1999; Yano & Gouda 1999; Seljak 2000; Ma &

Fry 2000), and some of these papers independently propose

elements of the picture suggested in this work. This surge in

activity is probably traceable to the detailed N-body work on the

structure of haloes in CDM universes, driven by the ability to

simulate a large dynamic range in halo masses with large numbers

of particles per halo (e.g. Navarro, Frenk & White 1996; M99;

Bullock et al. 1999; Subramanian, Cen & Ostriker 1999).

We have shown here that the density-clump paradigm can give a

good quantitative understanding of the non-linear correlations of

the cosmological mass field. Indeed, to some extent the picture

extends our existing understanding. Much recent work on non-

linear mass correlations has adopted the `scaling ansatz'

(Hamilton et al. 1991; Peacock & Dodds 1996) in which the

small-scale correlations are assumed to obey stable clustering.

This assumption requires that the small-scale correlations have a

slope that depends on the power-law index of the primordial linear

spectrum, but this contradicts the predictions of the density-clump

model: the halo structure is universal and thus the small-scale

correlations should be independent of n. The density-clump model

thus suggests that stable clustering should not be followed in

practice, and this is exactly what is seen in our recent work on

simulations with scale-free initial conditions (Smith et al., in

preparation).

Extending this model to deal with the clustering of galaxies

requires additional assumptions, but many of these extra ingredi-

ents can be constrained empirically. Two things are required: (1)

the `occupation number' of a given halo (the number of galaxies it

contains above a given luminosity threshold); (2) the location of

these galaxies within their halo. We have argued that the mean

occupation number as a function of mass can be obtained

empirically from the observed properties of groups as a function

of the number of galaxies they contain. For the second point, we

have adopted the hypothesis that one galaxy always marks the

halo centre, with its neighbours acting as satellites that follow the

halo density profile. Both these assumptions require modification

in more realistic models: there will be some dispersion in occu-

pation number about the mean for haloes of a given mass, and

dynamical friction will cause galaxies to sink together within their

common halo. These effects are of course included automatically

in semianalytic models; the detailed discussion of such models in

e.g. Benson et al. (2000b) suggests to us that our simplifying

assumptions do not cause much change in the predicted galaxy

correlation properties,

In any case, the model proposed here has significant heuristic

Figure 9. The line-of-sight pairwise velocity dispersion for the LCDM

model, plotted against projected pair separation.. The top curve shows the

results for all the mass (stars); the lower pair of curves shows the predicted

galaxy results, with (filled circles) and without (open circles) assuming

that one galaxy occupies the halo centre. Assuming one central galaxy

lowers the dispersion significantly, but the main effect comes from the

lower efficiency of galaxy formation in high-mass haloes.
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value, as it identifies a number of potential key issues in

understanding the main features of galaxy clustering.

(1) The galaxy distribution is inevitably biased, because haloes

of very low mass cannot house L* galaxies. Because galaxies may

orbit within their haloes out to the virial radius, the bias is

inevitably non-local on these scales. This is not non-local bias as

envisaged by e.g. Dekel & Rees (1987): there are no propagating

non-gravitational effects between galaxies. However, each galaxy

is sensitive to the global properties of the halo it inhabits.

(2) The small-scale correlations of galaxies are very sensitive to

the distribution of galaxies within haloes. If galaxies trace mass

within haloes, their correlations are the autocorrelation of the halo

density profile, and are rather flat. Conversely, with the ansatz of

one central galaxy plus satellites, the small-scale correlations

should follow the form of the halo density profile. According to

M99, this is r / r21:5; this is probably the main explanation for

the observed small-scale power-law clustering. The success of this

model is an argument against suggestions that clusters of galaxies

may not have cuspy cores (Tyson et al. 1998).

(3) The amplitude of this small-scale clustering depends

critically on the number of `isolated' galaxies: haloes whose

occupation number is unity, and which thus contribute no small-

scale correlated pairs. Empirically, most galaxies seem to exist in

such a state, so it is possible to achieve an antibiased galaxy

population on intermediate scales (although the different small-

scale slopes mean that galaxy correlations always exceed those of

the mass on sufficiently small scales).

(4) The required occupation numbers as a function of mass are

constrained by observations of the abundances of galaxy groups as

a function of luminosity. For most popular CDM models, this

requires a strongly mass-dependent M/L for haloes in the range

1012±1015 M(. If a detailed galaxy formation model is to yield

reasonable clustering properties, it must account for this variation.

(5) Once this empirical constraint is satisfied, most models

predict rather similar small-scale clustering, but models with V .
0:3 match the data better than models with V � 1: This will be a

general feature of cluster-normalized models, owing to the smaller

core radii expected for haloes of a given mass in a high-density

model.

(6) The density-clump model also appears to account naturally

for the low small-scale pairwise velocity dispersion of galaxies.

The main effect is the down-weighting of high-mass haloes

required in CDM models in order to achieve the observed galaxy

group luminosity function.

We expect that this model will be worth exploring further. There

are many statistical properties beyond the two-point level where it

will be interesting to understand the differences between the

properties of galaxies and of the mass. The model will also serve

as a useful tool for rapidly generating mock galaxy catalogues

from N-body simulations. As computer technology improves,

more `exact' calculations of large-scale galaxy formation will be

possible, but these will inevitably require simplified treatment of

the star-formation process, and so will never be completely robust.

We believe that the issues outlined above will continue to be

important in understanding the results from such calculations, and

how they relate to the real distribution of galaxies.
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A P P E N D I X A : H A L O C O R R E L AT I O N

F U N C T I O N S

The correlations are easily deduced by using statistical isotropy

(see Fig. A1): calculate the excess number of pairs separated by a

distance r in the z direction (chosen as some arbitrary polar axis in

a spherically symmetric clump). Consider a point at radius x in the

clump; the second point has radius
������������������������������
x2 � r2 � 2xrm

p
; where m �

cos u is the cosine of the angle of the first point from the polar

axis. The excess number of pairs relative to random is now easily

evaluated, and the correlation function is

j � 1

n

�1

21

dm

2

�xmax

0

r�
������������������������������
x2 � r2 � 2xrm

p
� dp

dx
dx: �A1�

Here, n is the mean number density of particles, which is the

number density of clumps times the number of particles per

clump; r is the number density of particles within a clump; dp=dx

is the radial probability distribution for a particle in one clump. If

the clumps have a maximum radius R, then it can be deduced from

Fig. A1 that, for r , R; x is unconstrained if m , 2r=R;
otherwise it has the upper limit

xmax �
��������������������������������
R2 2 r2�1 2 m2�

q
2 rm: �A2�

For power-law clumps, with r � nBr2e; truncated at r � R; the

above expression for j becomes the following for r , R :

j�r� � �3 2 e�B
r2e23R32e

�2r=2R

21

dm

2

�R=r

0

s22e ds

�1� s2 � 2sm�e=2

"

�
�1

2r=2R

dm

2

� �������������������
m221�R2=r2
p

2m

0

s22e ds

�1� s2 � 2sm�e=2

#
�A3�

(see Peebles 1974). Similar expressions apply for R , r , 2R;
and the correlation function vanishes for r . 2R: In the limit

r ! R; this shows that j / r322e; provided 3=2 , e , 3; so that

the s integral converges at both small and large s. Values e . 3 are

unphysical, and require a small-scale cutoff to the profile. There is

no such objection to e , 3=2; and the expression for j tends to a

constant for small r in this case (see Yano & Gouda 1999).

In the isothermal e � 2 case, Peebles (1974) showed that the

integral can be evaluated for r ! R; so that the small-scale

correlations in this limit become

j�r� � p2B

4rR
� pN

16rR2n
; �A4�

where N is the total number of particles per clump.

A P P E N D I X B : H A L O M A S S F U N C T I O N S

In recent years, it has been common practice to model the halo

mass function via the Press±Schechter (1974; PS) form:

f �n� �
����
2

p

r
exp �2n2=2� n � dc=s�R� )

F�. n� � 1 2 erf �n= ���
2
p �: �B1�

This gives the differential and integral fraction of the mass in the

universe that has collapsed into objects with a mass M:

n ;
dc

s�M� ; �B2�

where s (M) is the rms fractional density contrast obtained by

filtering the linear-theory density field on the required scale. In

practice, this filtering is usually performed with a spherical `top

hat' filter of radius R, with a corresponding mass of 4prbR3=3;
where rb is the background density. The number d c is the linear-

theory critical overdensity, which for a `top-hat' overdensity

undergoing spherical collapse is 1.686 ± virtually independent of

V. The Press±Schechter collapsed fraction can be converted to a

differential number density of objects, n(M), using

Mn�M� � rb

dF

dM
: �B3�

More recently, evidence has accumulated of deviations from the

PS form; ST suggest the following modification:

f �n� � 0:21617�1� � ���2p =n2�0:3� exp�2n2=�2 ���
2
p �� )

F�. n� � 0:32218�1 2 erf�n=23=4�� � 0:14765G�0:2; n2=�2 ���
2
p ��;
�B4�

z

R

r
x

θ

Figure A1. The geometry of correlations from independent haloes. If the

haloes are randomly placed (including the possibility that they may

overlap), then correlated pairs arise only within a given halo. Consider a

given point, at radius x from the centre of a particular halo; we are

interested in the mean excess number of neighbours at a radius r from this

point. Through isotropy, it will suffice to calculate the excess of

neighbours at an offset r in the z direction.
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where G is the incomplete gamma function. A highly accurate

approximation for the integral distribution at n , 1 is

F�, n� .
0:21617n� 0:59964n0:4

1� 0:073n2
: �B5�

Note that ST used the symbol n to have a different meaning from

the usual n � dc=s�R�; adopted here. Their modification partly

amounts to reducing dc slightly, but their mass function also has a

somewhat steeper low-mass tail than the Press±Schechter formula.

A P P E N D I X C : H A L O D E N S I T Y P R O F I L E S

This appendix gives some details of the alternatives that have been

used to model the density profiles of virialized haloes. Traditionally,

virialized systems have been found by a criterion based on perco-

lation (`friends-of-friends'), such that the mean density is about 200

times the mean. Sometimes, the criterion is taken as a density of

200 times the critical value. We shall use the former definition:

rv � 3M

800prb

� �1=3

: �C1�

Thus rv is related to the Lagrangian radius containing the mass via

rv � R=2001=3: Of course, the density contrast used to define the

boundary of an object is somewhat arbitrary. Fortunately, much of

the mass resides at smaller radii, near a `core radius'. These core

radii are relatively insensitive to the exact definition of virial

radius.

The simplest model for the density structure of the virialized

system is the singular isothermal sphere: r � s2
v=�2pGr2�; or

r=rb �
200

3y2
; �y , 1�; y ; r=rv: �C2�

A more realistic alternative is the profile proposed by Navarro

et al. (1996, NFW): (Fig. C1):

r=rb �
Dc

y�1� y�2 ; �r , rv�; y ; r=rc: �C3�

The parameter Dc is related to the core radius and the virial radius

via

Dc � 200c3=3

ln�1� c�2 c=�1� c� ; c ; rv=rc �C4�

(we change symbol from NFW's d c to avoid confusion with the

linear-theory density threshold for collapse, and also because our

definition of density is relative to the mean, rather than the critical

density). NFW showed that Dc is related to collapse redshift via

Dc . 3000�1� zc�3; �C5�
An advantage of the definition of virial radius used here is that Dc

is independent of V (for given zc), whereas NFW's dc is /V.

The above equations determine the concentration, c � rv=rc

implicitly, hence in principle giving rc in terms of rv once Dc is

known. A useful approximate formula for the inversion is

c21 . 400=�3Dc� � �110=Dc�0:387: �C6�
NFW give a procedure for determining zc. A simplified argument

would suggest a typical formation era determined by D�zc� � 1=n;
where D is the linear-theory growth factor between z � zc and the

present, and n is the dimensionless fluctuation amplitude

corresponding to the system in units of the rms: n ; dc=s�M�;
where dc . 1:686: For very massive systems with n @ 1; only rare

fluctuations have collapsed by the present, so zc is close to zero.

This suggests the interpolation formula

D�zc� � 1� 1=n; �C7�
The NFW formula is actually of this form, except that the 1/n term

is multiplied by a spectrum-dependent coefficient of order unity.

Recently, it has been claimed by M99 that the NFW density

profile is in error at small r. M99 proposed the alternative form

r=rb �
Dc

y3=2�1� y3=2� ; �r , rv�; y ; r=rc: �C8�

It is straightforward to use this in place of the NFW profile: we

want to use the same mass (and hence the same virial radius), and

to arrange for the density profiles to match at large r (i.e. at the

virial radius). An accurate approximation that relates the

`concentration' parameters �c � rv=rc� in the two profiles is

c�M99� � �c�NFW�=1:7�0:9: �C9�
The procedure to use is therefore:

(1) pick a mass, and hence virial radius;

(2) evaluate n (M), and hence zc;

(3) from zc, get Dc[NFW] and invert to get c[NFW];

(4) convert to c[M99];

(5) from the definition of virial radius, get Dc[M99]:

Dc�M99� � 100c3

ln�1� c3=2� : �C10�
Lastly, note that the M99 profile has the practical advantage that

its integral mass distribution is readily inverted:

M�, r� / ln�1� y3=2�; y ; r=rc; �C11�
so that it is simple to convert between M�, r� and r in either

direction; for the NFW profile, this task must be done numerically.

It may thus be more convenient to work entirely with the M99

profile, without using NFW as an intermediate step. This requires

a relation between c[M99] and zc, and the following simple

approximation is accurate to a few per cent for zc & 300 :

c�M99� � 1:8� 2:1zc: �C12�

This paper has been typeset from a TEX/LATEX file prepared by the author.

Figure C1. A comparison of various possible density profiles for virialized

haloes. The dotted line is a singular isothermal sphere. The solid lines

show haloes with formation redshifts of 0 and 5 according to NFW

�V � 1) and M99.
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