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ABSTRACT

Hamilton et al. have suggested an invaluable scaling formula which describes how
the power spectra of density fluctuations evolve into the non-linear regime of
hierarchical clustering. This paper presents an extension of their method to low-
density universes and universes with non-zero cosmological constant. We pay
particular attention to models with large negative spectral indices, and give a
spectrum-dependent fitting formula which is of significantly improved accuracy by
comparison with an earlier version of this work. The tendency of non-linear effects
to increase power on small scales is stronger for spectra with more negative spectral
indices, and for lower densities. However, for low-density models with a
cosmological constant, the non-linear effects are less strong than for an open

universe of the same Q.
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1 INTRODUCTION

The power spectrum of density fluctuations is a statistic of
central importance in cosmology, as it describes a combina-
tion of the primordial deviations from homogeneity and
their subsequent modification by the matter content of the
universe. One practical obstacle to a measurement of this
useful function is that the present universe occupies a state
where non-linear gravitational growth of density fluctua-
tions has altered the form of the fluctuation spectrum.

Prior to 1991, it was assumed that this problem was tract-
able only in two extreme limits. On large scales, linear
theory applies and the power spectrum scales as the square
of the density growth factor. For very large wavenumbers,
we enter the ‘stable clustering’ regime, where there is a
simple relation between the power-law index of the spec-
trum and that of the output non-linear spectrum (see
section 73 of Peebles 1980). It was therefore a significant
breakthrough when Hamilton et al. (1991, hereafter
HKILM) suggested a scaling procedure which allowed an
accurate description of the transition regime between these
two limits in terms of an empirical universal function.

In a previous paper (Peacock & Dodds 1994, hereafter
PD), we extended the HKLM procedure in a number of
ways. First, we presented a version of the method which
worked with power spectra, rather than HKLM’s choice of
integrated correlation function. Secondly, we considered
the modifications to the HKLM argument needed to work
in a universe of arbitrary density, rather than HKLM’s
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Q=1. We applied this extended HKLM method to a com-
pilation of clustering data, and concluded that the linearized
data for k<0.4h Mpc™' (h=H,/100 km s~' Mpc™') were
consistent with a spectral index of about —1.5 on small
scales, steepening to close to the primordial n=1 on large
scales [P(k) ock”].

However, the universal scaling procedure of HKL.M was
known to fail for more negative spectral indices, as has been
investigated in some detail recently for Q=1 models by
Jain, Mo & White (1995, hereafter JMW). A common
description of the linear power spectrum is in terms of the
cold dark matter (CDM) model, whose power-law slope
tends to — 3 on very small scales, so the HLKM method and
its extensions in PD may not work very well if we attempt to
investigate scales significantly smaller than those studied in
PD. We have therefore run an additional ensemble of
N-body simulations which concentrate on the case of spec-
tra with n < — 1 and the CDM spectrum. It turns out that a
simple slope-dependent correction can be made to the PD
formulae which provides an excellent description of the
non-linear data over essentially all regimes of interest, and
this is described below.

2 THE HKLM METHOD

The key argument of HKILM is that gravitational collapse
causes a change of scale. By regarding the integrated corre-
lation function &(r) as measuring the number of excess
neighbours within radius r, they suggested that observed
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non-linear correlations on non-linear scale ry; be related to
a pre-collapse linear scale via

rn=[1+ ENL(rNL)]IBrNL' @

HKIM then conjectured that, having translated scale, the
linear and non-linear correlations had some universal
relation

ENL(’ L) =frl EL(" 98 2

The function fi; must behave as fy (x)=x in the linear
x <1 limit and fy, (x) ocx*? in the stable-clustering x > 1
limit, and must be determined numerically around x ~ 1.

PD argued that a very similar argument could be made to
work for power spectra, using a dimensionless version of the
power spectrum: A? is the contribution to the fractional
density variance per unit In k. In the convention of Peebles
(1980), this is

do?

|4
=——4nk*|6,]

A*(k)= =
*) dlnk (2r)’ 3)

(V being a normalization volume), and the relation to the
correlation function is

2d_ksinkr
k k

.f(r)=j' A “

Since &(r) can be thought of as A at some effective wave-
number, this suggests the k-space version of HKLM:

k= [1 +A 12~1L (kNL)] - lBkNL9 (5)
A o) =fr[AL (kL)) (6)

The extension to models with Q1 is straightforward in
the highly non-linear regime. The fy; (x) ocx* scaling comes
because, once a virialized object is formed, the non-linear
correlations depend on scalefactor a (f) just as a background
density, &y oca’®, whereas the linear correlations scale as
¢ oca’. If we now allow a density-dependent growth-
suppression factor into the linear growth law,

& oc[ag Q)T (7
the virialized regime becomes
fra () ocx™?[g ()] . ®

The g(Q) factor may conveniently be taken.from the high-
accuracy fitting formula of Carroll, Press & Turner
(1992):

5
g(Q) = Q. [Q —Q,+(1+Q./2)(1+Q,/70)] 7, ©®)

where we have distinguished matter (m) and vacuum (v)
contributions to the total density parameter.

The problem is now reduced to one of running a number
of N-body simulations to obtain the full form of f; and to
investigate its dependence on the cosmological model. The
power of the original HKL.M method was the belief that f,;
was a universal function. Using this assumption, PD fitted a
g-dependent non-linear function to a restricted set of
N-body simulations — a procedure which works reasonably

well for spectra with z in the region of — 1. With the larger
library of simulations studied here, however, it is possible to
see that there is a dependence on the linear spectrum, but
one that can be described well by a simple fitting formula.

3 NUMERICAL DATA AND FITS
3.1 N-body code

The carrying out of the required set of numerical experi-
ments has become much easier recently, partly owing to an
increase in the power of computer hardware, but mainly
through the generous distribution of the Adaptive Particle—
Particle—Particle Mesh (apr3Mm) code of Couchman (1991).
This solves the Poisson equation on a mesh to obtain the
large-scale force, which is then supplemented by exact pair-
wise forces from the near neighbours. Such p3Mm codes nor-
mally slow down for highly clustered distributions, but this is
avoided in Couchman’s method by adaptive regridding of
the densest regions on a finer mesh.

For the present purposes, the main problem with Couch-
man’s code is that it is supplied for an Q=1 cosmology only.
The equations of motion use positions, x, measured in units
of the box size, L, (plus a scaling with the Fourier mesh
size). The velocities are defined with these length units and
a time unit of the age of the universe at the start of the
simulation. Also, a ‘time’ variable, p, is used to integrate the
equations of motion:

3
p=5;a“. (10)

In principle, the index o can be altered according to the
spectrum; we retained a=3/2, so that both p and the scale-
factor a were unity at the start of the simulation.

The standard equation of motion (e.g. section 14 of
Peebles 1980) can then, with a little effort, be cast into the
form (dashes denoting d/dp)

1 2 1 3\
v’+[—+—+—}v=Qm(p) (—)f, 11
p ap T 20p
where f is the force vector as calculated by the ap3m pro-
gram, and T=H(p)¢, is the product of the physical Hubble
parameter and the initial time. The required modifications
to the ap3M equations of motion are therefore to multiply
the forces on the rhs by Q. (p) and to use the appropriate
T(p). Note that a non-zero cosmological constant only
enters through T'(p).
For an Einstein—de Sitter universe, T=(2/3)a > In
general, we have the exact result (Carroll et al. 1992)

H@)=H,\/JQ(1-a-)+Q,(@a>—a-?)+a2. (12)

There is also the excellent approximation

11—l
—, 13
7 (13)

where f=0.7Q, —0.3Q, + 0.3 and S, is sinh if f<1, other-
‘wise sin. This is not needed, however, since we are only
interested in T'/T:

2
Hoto=§ |1 —fl_mSk
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T 20pQ.(@a>—a)+Q(1—ad)+a?

The only problem with using these formulae to obtain
T (a) is Couchman’s convention that the reference time ¢, at
which a =1 is at the start of the simulation, so that Q_ and Q,
in the above formulae are the initial values, not those at the
desired endpoint of the simulation, designed to correspond
to the present epoch. To relate the initial and final values of
Q. and Q, we use

Qm
Qm(a)=a+Qm(1—a)+Qv(a3—a)’ (1)
0,(0)= 22 (16)

a+Q,(1-a)+Q(@’—a)’

These formulae work whether a=1 is regarded as the start
or as the end of the simulation; the important thing is not to
mix the conventions.

Lastly, there is the question of initial conditions. The
Ap3M program generates a realization of a displacement
field corresponding to the given power spectrum. A possible
source of confusion, as usual, lies in power-spectrum units.
Couchman’s function pow relates to the notation here via

2

[L boxk ] :

Zeldovich initial conditions are assumed, so that initial dis-
placement and velocity are proportional. However, in order
to be properly in the growing mode, the Q=1 velocities
should be multiplied by the growth factor Q)° (initial)
(effectively independent of Q,: Lahav et al. 1991).

pow =

A*(k). 17)

3.2 Simulations and analysis

There are many degrees of freedom in possible N-body
runs. The physical ones are the power spectrum of interest
and the cosmological model. The size of the simulation box
also matters, since this must be set so that the fundamental
mode does not saturate:

A*Q2m/L,,) < 1. (18)

If this condition is violated, the results may not be reliable
on any scale, owing to the missing power beyond the box-
scale; we used a maximum value of 0.04. It is also necessary
that A? on the initial mesh-scale does not exceed unity, so
that the Zeldovich method used to set up initial conditions
does not produce excessive shell crossing. For steep spectra,
this can imply a more restrictive limit on the final box-scale
amplitude.

There remain the numerical parameters of the number of
particles, the total expansion factor, the number of time-
steps, the force softening and the required force accuracy.
We carried out various experiments varying these para-
meters, to see how robust the results were. We generally
found that even quite simple simulations would reproduce
the main features of the non-linear results here, particularly
in the quasi-linear regime. We obtained most of our data in
a standard configuration of N =80’ particles, integrated in
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300 time-steps over an expansion factor of 15. A 128
Fourier mesh was used, with the initial softening set at one
cell, held constant in proper terms down to a minimum of
0.1 cell. Some cases were checked in N =100’ runs with 600
time-steps, but these much longer simulations gave essen-
tially identical results.

The only factors that influenced the resulting power spec-
tra significantly were particle placement and the question of
whether or not to use proper Gaussian realizations in the
initial conditions. It is common to start N-body simulations
by applying the initial displacement field to particles placed
on a uniform grid, but there are times when this is not
desirable. For example, the original grid is often noticeable
even at late times in void regions. A cosmetic improvement
can be made by starting from a set of particle positions
which are irregular but subrandom, such as the ‘glass’
described by Baugh, Gaztafiaga & Efstathiou (1995). A
simpler alternative is to displace each particle randomly
within its grid cell, which sets up an n =2 spectrum of initial
perturbations in addition to those imposed by the initial
displacement field. With any of these alternatives, some
care is needed when obtaining the power spectrum of the
density field.

As in the case of redshift surveys, the particle distribution
is Fourier analysed, and shot noise is subtracted from the
raw power to allow for particle discreteness (see Peacock &
Nicholson 1991). This would be a correct procedure at all
times if the initial particle positions were also Poisson distri-
buted, but the resulting small-scale fluctuations would then
swamp the desired physical spectrum. The alternative start-
ing schemes cure this problem, but introduce discreteness
fluctuations that are initially smaller than Poisson, so that
subtracting shot noise underestimates the spectrum in the
early stages of the simulation. Small-scale mixing rapidly
cures this problem at large k (effectively as soon as the first
pancakes form), but the overall spectrum will not be correct
until the large-scale portion has grown enough to exceed the
shot power

a2 2 (k//L oo )T (19)
shot N box .

For N=80" particles, the shot power on the box-scale is
A%,,=10"*% and this only becomes negligible when the
box-scale power is ~ 107>, For n <0, the shot power rises
more rapidly with £ than the physical power, and so in
practice larger values of the box-scale power need to be
used in order that the quasi-linear part of the spectrum is
not affected by shot-noise subtraction. For n= —2, this
requires box-scale power at the non-linear limit of 0.04:
simulation of more negative indices is not feasible without a
great increase in the number of particles used.

Even for the analysis of N~ 10° particles, only a fast
Fourier transform (FFT) is practical, in which case the
range of k accessible is limited by the size of the FFT array.
For a 256 mesh (our normal limit), the Nyquist frequency is
only 128 times the fundamental frequency, and even here
the power spectrum is affected by binning and by aliasing
(Baugh & Efstathiou 1994). The binning correction is, to
second order in k,

AgmzAtzrue/(l +k232/12)’ (20)
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where B is the bin size (=simulation box/256). Aliasing
effects depend on the slope of the power spectrum; gravita-
tional instability tends to produce an effective index in the
range —1 to —2, so this is not a problem in practice.

Normally this size of FFT was sufficient for our purposes, .

but occasionally we wished to extend the results to smaller
scales. We then divided the data into a set of subcubes and
analysed each separately, obtaining an estimate of the
small-scale power spectrum by averaging. Although these
samples are individually quite non-linear on their box-scale,
a few comparisons with time-consuming direct Fourier
transforms of the complete data set indicated that the over-
all power spectrum could be recovered in this way over a
factor of 300 in £, allowing the maximum range of non-
linearity to be probed in a way consistent with the resolution
of the simulations. It is interesting to note that great
accuracy is required in the Fourier analysis. A small error in
non-linear power produces a small error in the deduced
linear power; however, because f, is so steep in the quasi-
linear regime, this small horizontal shift can result in a gross
vertical error in fi; . More comfortingly, this means that the
forward prediction of non-linear power is quite robust with
respect to moderate errors in fy;, and our simple para-
metrization of the numerical results should give very accu-
rate results in most circumstances.

Finally, to create a proper realization of Gaussian initial
perturbations, each Fourier mode should have a random
phase and a power exponentially distributed about the
mean. The alternative is to use exactly the expectation
power, which has the advantage that the large-scale linear
portion of the power spectrum does not suffer a large scat-
ter owing to the limited number of modes. The results on

o
o
8 E LML AL | L ML |
o /i
: =1 (ORI
®
8 = [ n=0 *** =
—F ]
C *x n=-1 ]
- o n=-1.5 4
“FF o n=-2 3
L N Lo aaal RS ST WU O S A AT N |
0.1 1 10
2
AL

Figure 1. The generalized HKLM function relating non-linear
power to linear power, for an Q=1 Einstein—de Sitter universe and
power-law spectra with n=0,- —1, — 1.5 and — 2. The solid lines
show the fitting formula of Section 3.3. For spectra with n 2 —1,
the function shows very little spectral dependence. For flatter spec-
tra, the non-linear power at a given linear power is higher; in
particular the slope of the quasi-linear portion around A%, ~ 10
increases as n decreases, from approximately fy, (x) ocx® forn=0to
fruu@)ocx forn=—2.

intermediate and small scales seemed identical in either
case, and so we used ‘improper’ realizations.

In this way, we built up a library of results covering
—2<n<0and0.1 <Q, <1, considering both open models
with Q,=0 and flat models with Q, + Q_,=1. For the same
cosmologies, we also considered CDM spectra, which are
parametrized by the shape Q# and the normalization o, (see
PD). For a given cosmology, these are degenerate degrees
of freedom in that a reinterpretation of the simulation box
length will change both Q% and g,. It therefore suffices to fix
one parameter and vary the other. We considered what is
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Figure 2. The generalized HKLM fnction relating non-linear
power to linear power, for Q, =1 and 0.2 at zero vacuum energy.
(a) An n=0 spectrum; (b) n= —1.5. The solid lines show the
fitting formula of Section 3.3. As Q decreases, the non-linear power
increases and the quasi-linear portion steepens. However, these
changes are largely associated with the increase of fy; in the viri-
alized regime with AZ; = 100.
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Figure 3. As for Fig. 2, but for spatially flat models with
Q,+Q,,=1. The generalized HKLM function relating non-linear
power to linear power, for Q =1 and 0.2. (a) An n=0 spectrum;
(b) an n= — 1.5 spectrum. The solid lines show the fitting formula
of Section 3.3. The Q dependence is weaker than for open models,
consistent with the idea that all that matters is the growth-suppres-
sion factor g(Q).

roughly the observed shape, QA =0.2, in a 100 4~ ' Mpc box,
with final values of o; in the range 0.4-1. For all these
simulations, results are available in the form of both the
final output time and earlier times. To be sure that the
results were free from artefacts of the initial conditions, we
used only the last factor of 2 expansion, since at least a
factor of 3 expansion is required in order for initial tran-
sients to die down (Baugh et al. 1995). This gave a set of 48
determinations of fy, to be fitted, from 18 distinct simula-
tions.

The next few figures give a selection of results. Fig. 1
shows fy, for a variety of power-law spectra with Q=1,
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Figure 4. As for Fig. 2, but for standard CDM spectra. The
generalized HKLM function relating non-linear power to linear
power. (a) For an Q=1 Einstein—de Sitter universe; Q% =0.2 and
03=0.3 and 0.5. (b) For an Q,,=0.1 universe with Q,=0 and 0.9;
Oh=0.2, g,=0.7. The solid lines show the fitting formula of Sec-
tion 3.3. Note that the CDM curves are steeper even than the
n= —2 power-law results, suggesting that the small-scale CDM
behaviour is characteristic of the tangent spectral index there,
which can be as negative as n= —2.5 for the models studied here.
Fig. 4(b) shows clearly the extra small-scale power produced in the
case of an open model by comparison with a flat model of the same
Q..

whereas Figs 2 and 3 show how these change with decreas-
ing Q, both without and with a cosmological constant. Figs 2
and 3 illustrate the point made by PD, that f, steepens as
we go to lower-density models. Fig. 1 shows that IMW were
correct in claiming that there was also a significant depend-
ence on spectral index, particularly for spectrawithn < — 1.
Such flat spectra have a larger fy;, but f, also appears to
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steepen for more negative n, whereas JIMW suggested a fit
in which the slope of the quasi-linear portion was indepen-
dent of #; in retrospect, this steepening can also be seen in
their data. Interestingly, however, the spectrum dependence
is less extreme for low-density models, as may be seen in
Fig. 2: for low densities, the quasi-linear portion of fy; has a
similar slope for both n=0and n= — 1.5. This is an import-
ant hint as to how to achieve an improved fit to the results.
What seems to be happening is that the main effect of
changing the density is to alter the amplitude of the viri-
alized fy (x) cx™ asymptote. JIMW suggested that this
amplitude was also a function of spectrum, being larger for
n= -2 than for n=0 by about a factor of 2. This could
account nicely for the different degrees of density-
dependent steepening: for n~ — 2, the asymptote is at a
sufficiently high level that raising it still further by lowering
the density has a small effect on the function. Conversely,
for n ~0, the non-linear function saturates quite early (for
Q=1) owing to the low level of the asymptote. We now try
to find a fitting formula to see how well this insight works
quantitatively.

3.3 Fitting formula
The fitting formula has the same form as used by PD:

1+Bfix + [Ax]?* ]W‘
1+ ([4xTg* (@)[va']y

fa)=x 1)

This contains five free parameters, each of which is poten-
tially spectrum dependent. B describes a second-order
deviation from linear growth; 4 and « parametrize the
power-law which dominates the function in the quasi-linear
regime; V' is the virialization parameter which gives the
amplitude of the fi; (x) ocx®* asymptote; f softens the transi-
tion between these regimes.

We proceeded by fitting the Q=1 results for individual
power-law spectra, and looking at the trends of the para-
meters with n. This suggested a functional form which
became progressively more non-linear as n approached — 3
[as with the power of (1 + n/3) proposed by JIMW]. The next
step was to fit what is now a 10-parameter model to the data
over the range —2 <n <0, and this was achieved satisfac-
torily, with an overall rms accuracy of about 12 per cent in
fu(x) over the range 0.1 <A}, <10*°. Adding data with
Q31 required very little alteration to the fit, as hoped from
the discussion in the previous Section: the g* term in the
fitting formula seems to be all that is required to incor-
porate different cosmological models.

The final step was to incorporate CDM results, which are
important for two reasons. The CDM spectrum is the most
important example of a spectrum which curves slowly so
that the effective power-law index n.,=d In P/d In k varies
with scale. It is also a useful case for the present investiga-
tion, since it contains very little large-scale power, but has
an effective n that tends to — 3 on small scales. Pure power-
law spectra with n < — 2 are very hard to simulate: being so
flat, they tend to saturate the fundamental mode before
enough small-scale non-linear evolution has occurred to
erase the initial conditions. JMW suggested that the non-
linear behaviour of CDM models could be modelled via the
power-law model corresponding to n., at the non-linear

scale. However, it seemed to us that the whole philosophy of
the HKLM method is that the non-linear power at ky,
derives from the linear power at the smaller k;. One would
therefore expect that the appropriate treatment for CDM
models would be to use a different fy, at each k,, according
to the tangent spectral index at that point. This is an import-
ant assumption, because it means that the small-scale power
in CDM models should be representative of the n < —2
spectra which are otherwise so hard to treat. Without this
assumption, we found our CDM results hard to fit: they
reach non-linear powers, on the smallest scales, that are
greater than would be expected from even the n= —2
power-law fits (see Fig. 4), but the non-linear response at
larger scales is less extreme, as would be expected if the
effective n were larger. However, although the trend of non-
linear response with scale is as expected, the CDM results
generally lie below those predicted from the power-law fits
using n.(k;). This is not unreasonable: if we compare a
CDM spectrum with its tangent power-law spectrum, the
power-law spectrum has a greater amount of power when
integrating from k=0 to k=k,. A practical means for
accounting for this difference is to conjecture that the non-
linear behaviour of the CDM spectrum will be characteristic
of its tangent index at some slightly smaller scale, and a shift
of a factor of 2 in k gives outstandingly good results:

dinP
ny (ki) =Tnk (k=k./2). ‘ (22)

The exact size of the shift is not critical, and we have made
no attempt to treat it as an additional parameter to be
optimized. Very good predictions of non-linear CDM
spectra are achieved even simply using the unshifted tan-
gent spectral index. A shift in this sense is likely to be
required for any curved spectrum, where n., changes slowly
with k. Since this prescription clearly also works for pure
power-law spectra, we propose this as a general method for
dealing with any smoothly curving spectra that are hier-
archical in the sense that A’ increases as k increases. The
obvious exceptions are therefore spectra with a small-scale
cut-off, such as hot or warm dark matter, and these will
require separate treatment.

We therefore performed a global fit to the power-law plus
CDM data with this assumption, and obtained an excellent
fit over all cosmological models, with an rms accuracy of
about 14 per cent in fi, (x). This is a demanding level of
agreement, since fi; (x) is so steep; the scatter in the trans-
verse direction, which governs the accuracy of power-
spectrum reconstruction, is only about 7 per cent. As dis-
cussed above, errors in fy, partially normalized themselves
away when predicting non-linear power, and this figure of 7
per cent is also the approximate rms accuracy with which
this method here will predict A%, for a given linear spec-
trum. The best-fitting parameters are

A=0.482(1 +n/3)"% (23)
B=0.226(1+n/3)"""" (24)
a=3.310(1 +n/3)"°* (25)
B=0.862(1 +n/3)~ %" (26)
V=1155(1 +n/3) ">, 27

© 1996 RAS, MNRAS 280, L19-126

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996MNRAS.280L..19P&db_key=AST

=== e e e e e - ==

Note once again that the cosmological model does not
enter anywhere in these parameters. It is present in the
fitting formula only through the growth factor g, which
governs the amplitude of the virialized portion of the
spectrum. This says that all the quasi-linear features of the
power spectrum are independent of the cosmological
model, and only know about the overall level of power. This
is not surprising to the extent that quasi-linear evolution is
well described by the Zeldovich approximation, in which the
final positions of particles are obtained by extrapolating
their initial displacements by some universal time-
dependent factor. All information on the cosmological
model is hidden in this extrapolation factor, and therefore
the model should have no effect if we scale to displacements
of the same size. The power spectrum in the Zeldovich
approximation has been calculated analytically by Taylor
(1993) and by Schneider & Bartelmann (1995), and it would
be of interest to compare their results with ours.

4 DISCUSSION

We have investigated in detail the scaling formula of HKLM
for the evolution of clustering statistics in cosmology.
Although not completely spectrum-independent, their
approach can be made to give a good fit for a variety of
spectra, provided one uses a simple dependence on the
tangent slope of the linear power spectrum. Because of the
need for a spectrum-dependent correction, we have not
provided a fitting formula for &, nor for the inverse non-
linear function. Inverting observed non-linear data is now in
any case an iterative process, and & is a statistic of less
practical interest than the power spectrum. It is probably
best to proceed numerically with the forward non-linear
function as a starting point.

The main feature of the non-linear HKLLM function in
this work is a power law on intermediate scales which is
rather steep, fy (¥)ocx'** with a~3.5-4.5, and it is a
challenge to understand this result. Padmanabhan (1996)
has given arguments to suggest that the intermediate slope
should be fy, (x) ocx’, but it seems that this is not the true
value. For spectra with n ~0, such an index works well
enough, but this appears to be an artefact of the relatively
rapid onset of the virialized regime. For lower densities or
very negative n, the virialized regime occurs at larger
powers, so that the steeper intermediate behaviour of fi, (x)
is seen more clearly. This steep quasi-linear function has an
interesting implication for the scaling of small-scale power
spectra and their evolution with time. For A’>>1, we
have

NL & [AZNL]IBkL

A oc[D*(a) AZ]' 7,

(28)

where D(a) is the linear growth law for density perturba-
tions. For a power-law linear spectrum, this predicts a quasi-
linear power law

Ay cc DO TN, 29)
where the non-linear power-law index depends, as follows,

on the slope of the linear spectrum:
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_ 3GB+n)(1+a)
T3+@+n)(1+0)

(30)

For the observed index of f~1.8, this would require
n~ —2.2, very different from the n=0 that would give
fp=1.8 in the virialized regime. However, especially for low-
density models, the virialized regime is only reached on very
small scales and the observed clustering data are dominated
by quasi-linear effects. It is then interesting to note that the
predicted evolution is faster than the linear A® oc D*(a); this
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Figure 5. The present fitting formula for the non-linear function
(solid lines) compared with the spectrum-independent form sug-
gested by PD (dashed lines), for the cases n= —1 and — 1.5 and
open models with Q_ =1, 0.5 and 0.2. The PD formula was an
approximation to the average effect of these different spectra, but
the detailed agreement is often poor, particularly at low Q for
flatter spectra. However, these deviations are small in the regime of
the data used by PD (A, <3).
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may be of relevance in understanding the weak angular
clustering of faint galaxies (e.g. Efstathiou et al. 1991;
Roche et al. 1993).

These results should be of practical use for a variety of
cosmological investigations. The most obvious case is the
theme pursued in PD: linearizing observed clustering data
in an attempt to infer the underlying linear power spectrum.
The fitting formula used by PD was restricted by the
assumption that fi; was spectrum independent, and the
results given here are of considerably greater accuracy,
particularly for n < — 1. How much this matters depends on
the application of interest; because fi; is so steep, it is
possible to predict A%, rather badly and yet be able to infer
A? with tolerable accuracy. This is illustrated in Fig. 5, which
compares the present fitting formula with the one given in
PD. There are deviations of up to a power of 10 in A%; in the
case of great non-linearity and low density. However, in the
regime of the data actually used by PD (A%, <3), the errors

in the deduced A; from a given non-linear power are at

most around 20 per cent; the work reported here thus does
not imply any serious revision of the conclusions reached in
PD. Nevertheless, there remains the challenge of under-
standing the highly non-linear portion of the power
spectrum, and the improved fitting formula from this paper
should be of use in attempts to interpret the clustering data
in this regime.
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