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SUMMARY

We use an all-sky sample of radio galaxies at redshifts z < 0.1 to study clustering in the
Universe on scales up to several hundred Mpc. The two-point correlation function
for these galaxies is consistent with their high optical luminosity and location in
moderately rich environments: &(r)=(r/11 A~ Mpc)~'¥, where h= H;/100 km s~ !
Mpc~L.

We discuss direct methods for obtaining the power spectrum of the density field
traced by the radio galaxies, taking into account the selection function of the sample.
The results of the power-spectrum analysis indicate that the distribution of radio
galaxies is more uniform on very large scales than would be predicted from an
extrapolation of the power-law clustering found on small scales. There is a break to an
effective spectral index nz — 0.5 for wavelengths 1 2200 A~! Mpc. The variance in
ON/N, o*, is about 0.3 for wavelengths 80 <1 <200 A ' Mpc, and there is no
concentration towards the supergalactic plane for z = 0.02. We thus do not confirm
suggestions made by Broadhurst e al. and by Tully of strong clustering on scales of

2100 Mpc.

1 INTRODUCTION

Radio galaxies have an honourable history as probes of cos-
mological large-scale structure: some of the first evidence for
large-scale isotropy came from the observed lack of cluster-
ing in the sky distribution of sources found in cm-wavelength
surveys. As the culmination of a series of papers on radio-
galaxy clustering, Webster (1977) was able to show that the
fluctuations in radio-galaxy number density between ran-
domly-placed cubes of side 1 Gpc were < 3 per cent. Scaling
density perturbations as (1+2z)™" back to last scattering at
z=1000, this implies density fluctuations <10~* at that
time — which still provides a limit comparable to present
observations of microwave background anisotropies on the
relevant scales ( ~ 10°).

Webster’s constraint probes such large scales because he
was investigating the 2D projected clustering in radio sur-
veys. The typical redshift in these surveys is z=1, so that
projection effects decrease sensitivity to clustering on smaller
scales very severely. Nevertheless, Webster’s work empha-
sizes the utility of radio galaxies for work on large-scale
structure; the simplicity and uniformity of source selection
makes these objects excellent statistical probes. This paper
therefore considers the three-dimensional distribution of
radio galaxies, based on a redshift survey which we have
recently completed. Our principal results are not only to
obtain the first detection of clustering of these objects on ~

10 Mpc separations, but also to constrain clustering on
larger (2100 Mpc) scales. This region of the clustering
spectrum has been of especial interest recently through sug-
gestions that the galaxy distribution may display large inhom-
ogeneities on these scales (Tully 1986, 1987; Broadhurst et
al. 1990). Existing optical redshift surveys lack the depth to
form a fair sample of such fluctuations, so our sample has an
important role to play here.

The plan of the paper is as follows: we describe the data-
base in Section 2. Section 3 performs the autocorrelation
function analysis. Section 4 considers superclustering in the
radio-galaxy distribution, and investigates whether there is
any large-scale concentration towards the supergalactic
plane. In Section S, we perform a direct power-spectrum
analysis, in an attempt to constrain very large-scale cluster-
ing. Section 6 summarizes our conclusions.

2 A RADIOGALAXY REDSHIFT SURVEY

We now describe the data to be used in this paper; a full
description will be given in Nicholson ez al. (in preparation).
The sample of galaxies analysed here is an approximation to
the following idealized criteria: (i) flux density $> 0.5 Jy at
1.4 GHz; (ii) redshift 0.01 <z<0.1; (iii) galactic latitude
[ b|>15°. An outline of the actual properties of the sample is
given in Appendix A. We began with a list of nearly 600
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candidate objects expected to have zs0.1, from which
spectroscopy has yielded 310 definite sample members. The
remainder either now have measured z>0.1 or are rather
faint optically, and so are very unlikely to lie at z <0.1 (radio
galaxies being optical standard candles). Estimating the
remaining unknown redshifts from apparent magnitude
suggests that the total number with z<0.1 will eventually
reach 329. We have used the additional 19 objects with esti-
mated redshifts <0.1 in the clustering analysis, although
their exclusion has little effect on the results. Fig. 1 shows the
sky distribution of the sample; the aim of all-sky uniformity
appears to have been achieved reasonably well. There are
some ‘holes’ in the z <0.1 sky distribution, but these contain
z>0.1 objects and so appear to be real, rather than the result
of incompleteness in the radio survey optical identification
process.

The completeness of the sample may be assessed by com-
parison with the known form of the local radio luminosity
function [o(P)] for elliptical galaxies, which has been derived
at 1.4 GHz by Auriemma et al. (1977) and Windhorst
(1984). For an assumed parametric form

o/l Gpe~*(Alog,,P) '] = ¢* (1+P—Z)_ , (1)

their results may be fitted

(10°%,10**' A" WHz ' sr™')  Windhorst
(10*7,10° A "> WHz ' sr™")  Auriemma et al.

(2)

(¢*, P¥)= [

Figure 1. The sky distribution of radio galaxies in the z<0.1
sample, plotted on an Aitoff equal-area projection. (a) Objects with
spectroscopic redshifts; (b) all remaining objects which were initially
selected as candidate sample members. All of these are either now
known to have z> 0.1, or are very likely to have redshifts above this
limit. Probably only about 20 sample members remain to be found.
Note that candidates do exist in regions of the sky devoid of z<0.1
sample members; these holes are not the result of incomplete
searches for radio-source identifications.

This functional form is easily integrated to yield the pre-
dicted redshift distribution:

dn(z)=dv(z) N[> P(z)], (3)
where, for Q=1,

P(z)(h 2WHz !sr™!)

=8.569 x 10”°(S/Jy) [2 (1_ )} (142) " ()

1+z

and we shall take a spectral index a =0.8 to be representa-
tive.

Theoretical curves for RLFs with the model parameters
given above are shown in Fig. 2. As expected, incomplete-
ness sets in at z=0.1, reaching a factor of about 2 by
z=0.15. The observed numbers of objects may seem low for
z>0.08, rather than 0.1, but given the structure in the red-
shift distribution at lower redshifts there is no clear evidence
for incompleteness until we reach z>0.1. The total expected
numbers of sources in the redshift shell from z=0.01-0.1
down to the flux limit of 0.5 Jy are respectively 305 and 349
for the Auriemma et al. and Windhorst sets of parameters.
The difference between these estimates is hardly surprising,
given that the volumes of space analysed in those surveys are
much smaller than that considered here. To sum up, any
incompleteness in the sample would appear to be no worse
than 10 per cent.

3 THE CORRELATION FUNCTION

The simplest measure of clustering is the two-point correla-
tion function. This measures the excess probability for find-
ing a pair in two volumes dV, and dV, separated by a
distance r (throughout, we take Q=1 and work in terms of
comoving distance, so that the spatial geometry is Eucli-
dean):

dP=p2[1+&(r)] AV, dV,. (5)

In practice, this statistic is usually measured by creating a
random catalogue much larger in size than the sample under

o
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redshift z

Figure 2. The redshift distribution for the sample (solid histogram),
with an estimate of the expected distribution of the remaining candi-
dates. The two lines show the expected distribution for a uniform
flux-density limit of 0.5 Jy at 1.4 GHz, according to the luminosity
functions of Auriemma er al. (1977, dotted line) and Windhorst
(1984, solid line). The sample appears reasonably complete to its
design limit of z=0.1, but rapidly becomes heavily incomplete
thereafter.
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study, and by counting pairs either within the two catalogues
(symbolized by (DD) and (RR)) or between catalogues
(symbolized by ( DR)), giving the two estimates

1+&,=(DD)/[(RR)  1+&,=(DD)/(DR). (6)

In both cases one is effectively measuring the expected num-
ber of pairs by Monte-Carlo integration. The second esti-
mator is usually held to be more robust and is the version
used in this work. However, similar results were obtained

using &,.

3.1 Simulated catalogues

An accurate estimate of &(r) depends on understanding the
sample selection effects, so that true clustering may be dis-
entangled from variations in depth or completeness. To
illustrate these problems, we have considered three different
methods for generating synthetic catalogues. In order of
increasing realism, these are given below.

(i) Assume uniform sky coverage with redshift homo-
geneity: generate a random (a, ) pair consistent with
| b|>15° and choose from the list of the observed redshifts
randomly.

(i) Assume declination-dependent completeness but red-
shift homogeneity: select randomly from the list of observed
declinations, choose a random right ascension and redshift as
in (i).

(iii}) Assume that both the completeness and redshift dis-
tribution vary over the sky. Select randomly from the list of
observed sky coordinates and match this with a randomly
chosen redshift. Because part of the real clustering pattern
comes from the fact that groups of close galaxies exist, we
need to smooth the sky distribution to some extent. Accord-
ingly, random perturbations over a circle of radius 6 were
added to positions randomly selected from the observed set.
For objects lying at | b| < 15° + 6, the perturbations were con-
strained to produce a resultant at | b|>15°, thus avoiding a
spurious reduction in smoothed surface density near the
galactic plane. The redshifts were selected, not from the
whole catalogue, but from those objects within =+ 6 in decli-
nation of the chosen position. Values of 6 up to 20° were
investigated.

Having made estimates of &(r), we now need to consider
error bars. In the absence of clustering, (£)=0 and (£%)=1/
N,, where N, is the number of independent pairs in a given
radial bin (Peebles 1980). For non-zero &, this suggests the
usual ‘Poisson error bar’

Af_ 1
1+& W,,

This will usually be a lower limit to the uncertainty in &;
Peebles (1973) shows that the right-hand side should be
increased by a factor of approximately 1 +4zn/;, 47J; being
the volume integral of & out to the radius of interest, and n
being the number density (see also Kaiser 1986). The prob-
lem with this expression is that J, may be hard to estimate. It
has been suggested (Ling, Frenk & Barrow 1986) that the
correct errors can be estimated via the bootstrap resampling
method. It seems to us that even this provides an under-
estimate: one is always concerned with sampling errors in the

(7)
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Figure 3. The two-point correlation function in redshift space, &(r),
for the whole sample. The filled points are derived using the
uniform-sky random catalogues (method 1). Results for random
catalogues generated using methods 2 and 3 are shown as open
circles and open squares respectively. The method 3 points adopted
0=120° it is apparent that this reduces the amplitude of clustering
slightly. Smaller values of 8 make larger differences, but at this point
we are almost certainly removing real structure from the sky distri-
bution. The curve shows the best-fit model &(r)=(r/11 h~!
Mpc)~ %, The error bars plotted are simple Poisson errors only; as
discussed in the text, it is apparent that these are too small by a
factor of at least 2-3 at large r.

sense that large-scale variations in properties of the density
field cause the area under study not to be a totally fair
sample. There is no totally satisfactory way of dealing with
this problem: any error bars we produce can only be lower
bounds to the true errors. Here, we shall adopt the simplest
method of initially presenting results with Poisson errors
(without J; corrections), and then discuss modifications to
these once we have some internal data on the likely magni-
tude of J;. In practice, it will turn out that Poisson errors are
a reasonable approximation up to r=20 A ~! Mpc.

3.2 Results

Fig. 3 plots the correlation-function results. We show &(7) for
the whole sample, illustrating the effects of different random
catalogue methods on &. There is a tendency for the uniform-
sky random catalogue (method 1) to give a slightly higher
answer, and for method 3 to give the lowest answer, as might
have been expected. However, unless 6 is made rather
smaller than the value of 20° used here, all methods of deter-
mination are consistent to well within the random errors.
This was not the case in the earlier stages of this project;
Peacock er al. (1988) presented a preliminary correlation
function based on only 125 redshifts available at that time.
The random catalogues then were based on method 2 -
using observed declinations. Assumption of a uniform sky
density yielded a much larger &£(r), as was to be expected
given that different declination bands did then indeed differ
greatly in completeness. The present result is much more
robust.

The most striking characteristic of &(r) is its large ampli-
tude. The slope is not particularly well constrained, but the
scalelength for unit clustering is quite well determined. Fit-
ting a model to correlation-function data is a somewhat
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Figure 4. The two-point correlation function in redshift space, &(r),
for the sample divided into two bins of radio power. Symbols are as
for Fig. 3. There appears to be no trend towards stronger clustering
in the weaker power bin, contrary to suggestions from a preliminary
version of the sample.

uncertain process as the various plotted points are not
guaranteed to be independent. However, if we neglect this
complication and simply fit the model

E(r)=(r/r)™7 (8)

to the observed data points (method 1) with Poisson errors,
then one obtains y=1.8%0.3 and r,=11.0+1.2 A~! Mpc
(fitting »<30 A~' Mpc only). These numbers are not very
sensitive to the use of different random catalogue methods or
different ranges of r. Using method (3) with 6=20° reduces
ro by about 20 per cent; however, we have already argued
that this method is likely to be subtracting real clustering
signal. It thus appears that the radio galaxies are correlated
about four times more strongly than normal galaxies, for
which &=(r/5 h~! Mpc)~ %,

We can now discuss error bars on &(r). If we adopt the
power-law model &(r)=(r/11)"'%, then the 1+4xnl, cor-
rection term may be estimated. The mean density of the
sample is about 10~53 A3 Mpc~3, in which case 4znt,=(r/

77 h~! Mpc)'2. We shall show in Section 5 that this is, if any-
thing, an over-estimate for large ». The density is somewhat
higher at low redshift, so use of the mean density may under-
estimate the correction by a moderate factor, because more
pairs will be drawn from the high-density regions. Looking at
the points with negative & at =50, one would suspect that
the errors are too small at this point by a factor 2-3, which
corresponds to 1 +4n/; with an effective n value of at most
around five times higher than the mean. Nevertheless, this is
still sufficiently low that the Poisson errors should be close to
the truth for < 20, and so the detection of clustering and the
determination of 7, cannot be seriously affected. For larger
scales, we prefer to rely on the power-spectrum analysis in
Section 5.

In retrospect, this strength of clustering is hardly surpris-
ing, since radio galaxies are abnormal in three related ways:
they are ellipticals; they are optically highly luminous; and
they tend to reside in clusters. Any of these properties would
give reason to expect enhanced correlations. Elliptical
galaxies have long been known to possess stronger correla-
tions: &(r) for these is about three times larger than for galax-
ies in general (Davis & Geller 1976). Although luminosity
segregation is a puzzlingly weak effect, there is some evid-
ence that it may be present for galaxies with L= L, in the
sense of an enhancement of a factor about 4 in § (e.g. Valls-
Gabaud, Alimi & Blanchard 1989; although see Phillipps &
Shanks 1987 for a contrary opinion). The correlations of
Abell clusters show an analogous enhancement; initial claims
of a scalelength of 25 4! Mpc by Bahcall & Soneira (1983)
appear to have been due to internal problems with the Abell
catalogue, and a revised scalelength of 14 A~ ! Mpc with little
richness dependence is given by Sutherland (1988). Our
results fit in well with such properties for galaxies in general,
and indeed provide some independent confirmation for
them. Radio galaxies range in luminosity from normal giant
ellipticals to the largest cD galaxies (e.g. Lilly & Prestage
1987; Owen & Laing 1989) and they occupy a range of
environments from poor groups to the richest clusters
(Longair & Seldner 1979; Prestage & Peacock 1988, 1989;
Yates, Miller & Peacock 1989; Hill & Lilly 1991). Although
this spread in properties is an important fact to recognise,
nevertheless on average the galaxies in our present sample
will have luminosities L= 5I, and Abell richnesses R=0;
enhanced clustering is thus almost inevitable.

One caveat which merits discussion is that we have
measured clustering in redshift space, which can lead to a
distortion of the clustering pattern. At small separations,
virialized peculiar velocities tend to smear out the highest-
density regions (‘fingers of God’); at large scales, conversely,
peculiar velocities in the linear regime will amplify apparent
perturbations. This process was analysed by Kaiser (1987),
who showed that the azimuthally-averaged correlation func-
tion or power spectrum is enhanced by a factor

£/E,=1+2Q06/3+Q12/5 (9)

i.e. a factor of 28/15 for Q=1. Clearly, this cannot account
for the enhanced clustering we observe; there must be real
enhancements in the spatial clustering pattern. Because of
this, our estimate of the clustering is less sensitive to the
effects of virialized peculiar velocities than would be the
case for a set of less clustered objects.
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There is one important distinction between the 1988
result and the present one, however. In 1988, the clustering
signal appeared to be confined to a band in radio power. At
the time, this seemed to be consistent with the fact that mean
cluster richness dropped around the Fanaroff-Riley (1974)
borderline. However, there is no strong evidence for a lumi-
nosity dependence in the final data. Fig. 4 shows &(7) for the
sample divided in radio luminosity, and no significant trend
is evident. If anything, the clustering in the high-power bin
may be stronger, which would be the opposite of the effect
previously claimed. In retrospect, this may not be so surpris-
ing: the later investigations of radio-galaxy cluster richnesses
(Prestage & Peacock 1988, 1989; Yates et al. 1989; Hill &
Lilly 1991) have found a smaller difference between the
environments of weak and powerful radio galaxies than was
suggested by Longair & Seldner (1979).

4 SUPERCLUSTERING OF RADIO GALAXIES
4.1 Possible superclusters and voids

To see directly whether the large-scale power seen here is
connected with particular superclusters, one may construct a
list of possible groups using the ‘friends of friends’ algorithm.
Here, one finds sets of objects which are connected in the
sense that one can move along the tree between members of
the set by steps of at most some characteristic linkage radius
r. Table 1 lists the results of this analysis for r =20 A~! Mpc,
excluding groups consisting of fewer than four galaxies.
Somewhat discouragingly, none of these groups appear in
the list of superclusters compiled by Bahcall & Soneira
(1984); however, the majority of the groups defined by these
authors are at higher redshift than those listed here. Much
better correspondence exists with the groups found in the
QDOT [RAS redshift survey (Saunders et al. 1991). Group
4 corresponds roughly to /RAS group S6; group 5 to IRAS
group NH; group 7 to IRAS group A2; group 9 to IRAS
group PL It is encouraging that (with the exception of group
1) this accounts for the richer of our groups, implying that
the clustering signal claimed above is indeed real. Interest-
ingly, we find no trace in our data of the very large Abell
supercluster at (13.5%, —30°, z=0.05) pointed out by Scara-
mella ez al. (1989), which also fails to appear in the IRAS list.
This fact, plus the lack of correspondence with the Bahcall &
Soneira supercluster list, may cast some doubt on the use of
the Abell catalogue for investigations of large-scale structure.
Some indication of the amplitude of very large-scale per-
turbations is given in Table 1 by the numbers 0, etc.; these
indicate the fractional number contrast in spheres of radius
20, 30 and 40 h~! Mpc centred on each supercluster candi-
date. Although the Poisson fluctuations are large, with only
~ 10 objects inside even the largest sphere, it seems clear
that order unity fluctuations exist for at least some 40 A~!
Mpc spheres within our sample volume. For completeness,
we have also looked at the distribution of void sizes in the
sample. Restricting ourselves to voids which lie entirely
inside the sample boundaries (and at z <0.07 to exclude the
lower-density outer edge of the sample), the largest voids
found have radius 50 £~ ! Mpc. Their approximate locations
are 0220 - 69 (z=0.050), 0330-08 (z=0.051), 1015—-06
(2=0.043), 1030+ 09 (z=0.049) and 1550 +45 (z=0.051).
Again, the significance of any individual one of these is small
{expected number of objects about five), but at least one must
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Table 1. ‘Friends of friends’ groups with pairing radius 20 2~ ! Mpc.

Group 1
1=164° b= -48° 7 =0.021
620 =49 630 =14 640 =1.1

Group 5
1=262° b=-25° 7=0.051
620 = 208 630 =49 640 =25

00364030 0.0140 0605—-494 0.0519
0123-016 0.0177 0616—487 0.0465
01534053 0.0186 0620—526 0.0511
02384085 0.0214 0625-536 0.0539
02384084 0.0217 0625—545 0.0519
02554058 0.0234 0649557 0.0492
03054039 0.0288 0641—-584 0.0561
03254023 0.0302
03564102 0.0306
23184079 0.0111 Group 6
[=307° b=40° z=0.014
Go0 = 2.7 630 = 1.2 640 =0.4
Group 2
- - 1250-102 0.0143
| =128° b= —63° z=0.043 1251—-122 0.0133
620 = 13.0 630 =2.6 &40=1.5 1258—-321 0.0149
1333-337 0.0129
0053-016 0.0436
0053-015 0.0385
0055—-016 0.0444 Group 7
01114021 0.0466 [=47° B=44° z=0.032
620 =119 630 =4.0 640 =1.6
15494202 0.0318
Group 3 1601+173 0.0354
1 =251° b= -55° z=0.064 16024240 0.0318
by0 =214 630 =72 640=23.5 16024178 0.0315
16154351 0.0296
0314—440 0.0628 16264396 0.0297
0319-454 0.0633 16524398 0.0337
0326—461 0.0690 16584302 0.0351
0332-391 0.0626
Group 8
I[=97° 5=33° z=0.027
Group 4 630 = 6.0 630 = 1.4 &40 =03

[=226° b=-31° z=0.034

620 =70 83 =19 & =10 1557+708 0.0258

2 0 a0 1637+826 0.0245

0431—134 0.0364 17444557 0.0304

0449~-175 0.0318 17544626 0.0276

0453—206 0.0343 17554626 0.0276

0502—103 0.0394

0503286 0.0381

0546—329 0.0369 Group 9

0548—317 0.0326 [=322° p=-23° z=0.018

0618—371 0.0324 By = 4.1 630 = 1.0 640 = 0.4
1637—771 0.0241
1718649 0.0142
1814766 0.0189
1833772 0.0178
1941554 0.0147

be real (indeed, the 1550 + 45 void corresponds to the IRAS
BV void).

These statistics give an indication of the presence of signi-
ficant structure on very large scales, but do not quantify the
results in a very useful way. In Section 5, we approach the
problem in a different way by means of a direct power-spec-
trum analysis of the radio-galaxy density field.

4.2 The Tully effect

Having shown that radio galaxies display a correlation
approaching that of Abell clusters, it is interesting to com-
pare with another aspect of the Abell cluster distribution.
Tully (1986, 1987) has claimed that the distribution of rich
clusters shows a marked flattening throughout the volume
z2<0.1, in the sense of a concentration towards the super-
galactic x-y plane (supergalactic Z points towards o=
2832188, 0=15%42).

Tully’s analysis took the observed SGZ distribution and
attempted to renormalize it to allow for sample selection
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(zone of avoidance and radial selection) in order to produce
a plot of SGZ-dependent density. This procedure is a little
dangerous in that it amplifies the statistical noise in the dis-
tribution at large distances from the plane. We therefore
carry out our analysis by comparison of observed SGZ histo-
grams, using the simulation procedures discussed above to
estimate the expected SGZ distribution on the null hypo-
thesis that the density field is isotropic.

We show the comparison for various redshift shells in Fig.
5. There is a clear concentration to the supergalactic plane
for z<0.02, but nothing significant in the shells at higher
redshift. We believe it was this flattening of the distribution at
low redshifts which accounts for the concentration towards
the supergalactic plane observed in the sky distribution of
sources from the Molonglo survey (Shaver & Pierre 1989).
On larger scales, we see no evidence for the sort of effect
claimed by Tully, and therefore conclude that it is possible
that his result derived from non-uniformity in the Abell cata-
logue.

5 POWER-SPECTRUM ANALYSIS
5.1 Techniques

Although it is a common tool, the correlation function may
not be the best way of answering some questions about cos-
mic structure. In many ways, the power spectrum is a simpler
quantity to consider; this measures directly the contribution
of different scales to dp/po — and is what we are supplied with
by e.g. inflationary theories. Rather than attempting to
Fourier transform the noisy estimate of &(r), it is better to
determine the power spectrum directly. This is particularly

z<0.02

iz

0 50
SGZ/h™'Mpe
T T T
3 [ 4
- 2>0.02
=z (o2 -
[aV]
(@)
-200 0 200
SGZ/h™Mpe

Figure 5. Histograms of supergalactic Z distance, for various red-
shift bands. The expected distribution for an isotropized catalogue
with uniform sky coverage is shown as the smooth curve. There is
no evidence for any concentration towards the supergalactic plane
beyond z=0.02.

true on very large scales, where &(r) is very sensitive to
assumptions about the mean density (because 1+ &z ~!
and £<1); a direct transform of the data, however, yields
Fourier coefficients of do/o which scale directly with 771
Power-spectrum analysis thus gives a more robust determi-
nation of the large-scale density field. Similar reasoning has
been used by Baumgart & Fry 1991, who give a power-
spectrum analysis of various optical galaxy catalogues; how-
ever, as detailed below, we believe that their analysis contains
an error.

Our procedure needs to be a little different from that of
Webster (1976). He used power-spectrum analysis as a statis-
tical test for departures from randomness, whereas we are
actually hoping to quantify such deviations. However, let us
start by following Webster and considering N galaxies which
are randomly and uniformly distributed throughout a cube of
volume V. In the continuum case, we would like to evaluate
the Fourier coefficients

1
6k=T/J' O(x) exp ik-xd’x, (10)

where 0 is shorthand for dp/p, not the Dirac ¢ function; k
denotes comoving wavenumber (k=2m/i). Here, |d,|°
would be the true power spectrum of the density perturba-
tion field in the sampled region of space. We need to form an
estimator for this quantity, which will be denoted by | §,|2
Note that the ideal | d,|> may differ from the global average
over a large volume; in what follows, we assume that the
volume to hand is large enough to form a fair sample of the
Universe. For the case of a limited number of galaxies samp-
ling the density field, we estimate Fourier coefficients by the
direct sum

a,=>. N ' expik-x,. (11)

In the absence of clustering, these coefficients execute a
random walk on the Argand plane. The expectation value of
the power is evaluated by splitting 3D space into a large
number of cells with occupation numbers n;=0 or 1 (¢f.
Peebles 1980)

(a?)=2 n3/N2=1/N. (12)

For N> 1 the central limit theorem yields the Rayleigh dis-
tribution for a single mode:

P(|a,]?> X)=exp — NX. (13)

This is the distribution of ‘Poisson noise’ which will overlay
the true clustering signal that we are trying to measure.

If there are any true non-zero Fourier coefficients in the
distribution of points, it is easy to see that the true and Pois-
son powers approximately add:

<rak|2>=zn%/N2+N~2<Z S exp ik-‘(r,.—r,->> (14)
=l+Z_V: I 6k!12rue
N N
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Thus, the power-spectrum estimator in this simplest case is
(for large N)

|6,% =]a,|2=1/N. (15)

If we consider a system periodic on the scale V73, then the
power contributed by modes in a given region of k space is
approximated in the continuum limit by V/(2x)*[|9,|> d° k,
where V/(27)? is the usual density of states. As we change the
box size, this integral must be held fixed; any true power in a
given discrete mode will therefore scale proportional to V ~1,
owing to the variation of the density of states with V. Thus,
since the Poisson noise is 1/N per mode, the ‘signal-to-noise’
just depends on the background number density of points:

Iékltzrue/lakhz’oissonocnb' (16)

Now, since in practice we have a region of space in which the
density is not constant, this suggests that we ought to weight
contributions to mode amplitudes according to the expected
background density (the usual reciprocal variance weighting):

%/J &(x) exp ik-xd’x—~ an(x) o(x) exp ik-xd’x. (17)

(ny,) V

Conveniently, this is almost what happens when we simply
transform the observed pattern of points:

1
(ny V

J ny(x)[1 + O(x)] exp ik-xd3x—>z N~ exp ik-x;. (18)

With larger data sets, the density might reach the point where
one would wish to downweight the contributions from high-
density regions on the grounds that true sampling fluc-
tuations were dominating Poisson noise. In this case, the
density weighting could be modified to introduce a critical
density above which all volumes are weighted equally:
n,~(ng '+ n')"!. We shall not do this here, as the results
below show that Poisson noise does indeed dominate in the
present sample.

The Fourier coefficients produced by a direct transform of
the data differ from the ideal case (a uniformly sampled very
large cubical survey) in three distinct ways, which must be
corrected for. Suppose a varying background is produced by
selection of some varying fraction of objects, n, = f(x) 7. The
corrections this introduces are, in outline.

(i) The Fourier coefficients obtained are proportional to
the transform of f(x)[1 + (x)], so the transform of f needs to
be subtracted.

(il) The selection function has a smaller effective volume
than any cube in which it is embedded, which affects the
amplitude of the power spectrum.

(iii) Modes of large wavelength are spuriously reduced in
amplitude because the mean density is estimated from the
sample itself.

We first need to subtract the transform of the selection
function, f(x), which vanishes in the usual case of a uniform
distribution:

_ 1
b= N"exp ik-x,-~Nan(x) exp ik-xd’x. (19)

We can now subtract the Poisson contribution (| b,|?)=1/N
from the power (neglecting the factor [N —1]/N). If Poisson

Large-scale clustering of radio galaxies 313

noise dominates, and if the selection function has little struc-
ture at large k, it may seem that the properties proved by
Webster (1976) should still hold: different b, should be
uncorrelated and the result of summing over a shell in k
space containing m modes should be an approximately
Gaussian variable with variance 2m/N? (the reality of the
density field means that d,( — k)= d;(k); only half the modes
in a shell are independent, hence the factor 2). The quantity

PR=Z b, - (20)

might therefore seem to be a good candidate for an estimator
of any true power in a shell of k space containing  modes,
with an approximate error bar of y2m/N. However, we have
yet to deal with normalization corrections.

The Fourier coefficients b, produced in the above way are
(to within noise) the convolution of the true 8, with the
transform of the selection function, and some care is needed
in analysing the effect of this process on the power spectrum.
Each mode we deduce is a sum over all true modes: (b,), =
3 W(i, j)(9,);- The new power spectrum therefore consists of
a convolution between the power spectra of the density field
and selection function (| b,|7=2| W|%(i, j)| 6,/?), plus cross
terms. However, the cross terms will clearly be zero on aver-
age, even if the different d, modes are correlated, provided
there is not also a correlation between the phases of the
selection function transform and the d,. This is just equiva-
lent to the assumption that the sample is fair, and is not
biased by e.g. excluding the region around all rich clusters.
Our estimator is thus for the quantity | 8,|%#| f,|?> which we
shall denote by | d,|?. With the exception of very low k (see
below), this convolution has a negligible effect on the shape
of the power spectrum, because the selection function con-
tains relatively little small-scale power. However, it does
affect the normalization in two ways: (i) the total number of
objects, N, used to normalize changes from 7[d%x to
i f d3x; (i) the area under the power spectrum of the selec-
tion function, | f;|?, changes by a factor [ f2d3x/[ d*x (by
Parseval’s theorem). Thus, P (k) must be scaled to account
for these changes:

[ fd’x)

P(k)-’P(k)W.

(21)

If f is normalized so that | fd3x =1 then, for a discrete grid in
k space, this becomes simply

Knax
P(k)ﬁl"(k)/g | fil?. (22)

To sum up the steps required in the analysis so far, the final
estimator for the true power spectrum convolved with | f, |2
is

Konax
|5kli=nbk|2—1/m/§ | A, (23)

where the coefficients b, are defined by equation (19).

A useful check that this procedure gives a sensible answer
is to consider the case of a uniform cubical survey of volume
V embedded in a larger cube of volume V': use of the den-
sity of states for the larger volume gives P(k) too high by a
factor V'/V. The analysis of Baumgart & Fry (1991) appears
to be faulty at this point. They scale power spectra from
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samples of different volume by a factor V2/V'2 rather than
V/V', thereby deducing a power spectrum which increases
spuriously with increasing sample depth. Thinking of the
correction factor in this way as an incorrect counting of
modes, we see that the errors bars on P(k) do not scale in the
same way as P (k) itself. The errors are proportional to Jm,
where there are m modes in the region of k space under
consideration, and hence should be scaled by only the square
root of the factor which applies to P(k) itself.

Finally, there are more subtle normalization effects arising
because the mean density is unknown and the condition
(6)=0 is applied to the data. This can clearly cause a sys-
tematic underestimate of power in modes whose wave-
lengths approach the size of the sample volume. Similar
problems exist in estimating the correlation function within a
finite volume, but are much more severe in that case. The
combination 1+ & is inversely proportional to the mean
density; for finite samples, this can be significantly affected
by modes larger than the sample size. This means that it is
impossible in practice to measure £ when it drops below the
fractional uncertainty in the mean density. With the power
spectrum, the main effect of such an offset in mean density is
just to scale the amplitudes of all modes by some factor.
However, the relative amplitude of large-wavelength modes
is also affected, as follows. We shift the true DC level of 6 by
subtracting the mean value over our sample:

60'=0 —J 8(x) f(x) d’x. (24)

In what follows, we will need to distinguish carefully between
the power spectrum of the true density field, P(k), and the
power spectrum of the renormalized field (P'), together with
their convolved counterparts (P, and Pj). The DC shift is
close in appearance to the case where a baseline consisting of
the convolution dxf is subtracted, which would be easy
enough to correct for, since P(k)=P'(k)/|1-f|*> More
accurately, the subtraction of a constant offset is equivalent
to forcing the power spectrum at k=0 to be zero, by sub-
tracting a spike at the origin. Since we have established that
the power spectrum we estimate is the true one convolved
with | f,|?, the spike is also convolved over and we have
P (k) =Py k)= P0)| fil*ie.

. P*<o>} 25)

Py(k) = Py(k) [1 | fil P |

The effect that this has depends on the power spectrum;
consider power-law spectra with |d,|?« k. Clearly, for an
n=0 spectrum, the ‘normalization damping’ factor is just
(1= £,]?); only modes with | f,|*= 0.1 will be affected at all
significantly. Some numerical experiments at convolution of
different power laws with Gaussian | f,|* functions show that
this statement holds reasonably well for all realistic values of
n. For spectra with P(0)=0 (i.e. n>0), the convolution pro-
cess produces spurious power at k=0, which is removed by
the above process. The net result can be that Py(k) is actually
closer to the true P(k) than is Py(k). On this basis, we expect
that normalization corrections will be at most 10-20 per
cent for the largest wavelengths investigated below, and these
effects have therefore been neglected in what follows.

For completeness, we should also cover the possibility that
the estimation of the radial part of the selection function
from the observed redshift distribution may introduce a bias
in the power spectrum. This would certainly be the case with
pencil-beam surveys over a restricted sky area, where most
of the clustering signal comes from clumping in redshift.
However, one of the advantages of having all-sky coverage is
that the sample is immune to such problems. Consider a fluc-
tuation of very long wavelength: this will appear as a simple
dipolar density gradient in the data, but it will have no effect
whatsoever on the redshift distribution deduced by averaging
over radial shells. There will therefore be no tendency to
underestimate power in very long-wavelength fluctuations.
To the extent that our sample has very nearly uniform all-sky
coverage, any such effects should be of a higher order than
those discussed above.

To present the results, it will be convenient to use the
notation

4
(2)°

I

A? 47k’| 6,7, (26)

i.e. AZis the contribution to the fractional variance from unit
range of In k. This is obtained from |8,]2 just by adding
power from shells in k space, and dividing by the appropriate
bin size in In k. In these terms, the usual definition of a
power-law power spectrum becomes A2 f3Fm,

5.2 Tests on simulated data

The above procedure is somewhat involved by comparison
with the estimation of &(r). It therefore seems important to
carry out a test on a mock data set. Accordingly, we created a
density field with the power spectrum characteristic of & =(r/
11 A~! Mpc)™ ! clustering (see below). This was achieved by
generating a realization of a Gaussian field G(x) and adjust-
ing its power spectrum empirically until the lognormal field
exp(G) had the desired power spectrum. Apart from enforc-
ing positively, this model may be a reasonable representation
of observed galaxy clustering (Coles & Jones 1991). This
density field was then multiplied by a selection function to
censor | b| <15° and produce an expected redshift distribu-
tion dn/dz constant for 0.01 <z<0.1, and a mock sample of
size equal to the true one was selected Poissonianly from the
resulting field. The sky distribution of this mock data set is
shown in Fig. 6. It is interesting that the large-scale distribu-
tion of the true data seems rather more uniform. As we shall
see, this is a hint of a lack of power on very large scales in the
radio galaxy sample.

Fig. 7 shows the initial stages in the analysis procedure as
applied to the mock data: (a) the raw power spectrum of the
data; (b) the power spectrum after subtraction of the Fourier
transform of the selection function from that of the data; (c)
the result after subtraction of the Poisson contribution. These
results used a 643 FFT in practice, with a box side of 558
h~! Mpc (i.e. covering space out to z=0.1). For this size of
array, the points of highest k are just starting to be affected
by binning, but this is a small correction (see Baumgart & Fry
1991). The main points to note are how effectively the spuri-
ous signal at low k in the raw data is removed, plus the fact
that Poisson noise is rather larger than the remaining signal.
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Figure 6. The sky distribution of a realization of a mock catalogue
designed to have the same sky coverage and redshift distribution as
the true data (¢f. Fig. 1a). The simulation is a lognormal model with
a power-law correlation function £=(r/11 A~' Mpc) '* and no
long-wavelength cut-off. Even in the sky distribution, some indica-
tion of the large-scale power may be seen in the form of a large
angular void.
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Figure 7. Illustrating the determination of the power spectrum, for
the mock data set. We show the raw power in each bin of & space (of
full width 0.35 in In k), uncorrected for bin size or for the effects of
selection-function convolution (upper set of open circles), then the
data with the selection function transform subtracted (lower set of
open circles), then the final answer with the Poisson power removed
(filled points). Note that the Poisson power dominates over the true
signal, except in the first few bins.
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Figure 8. The Fourier transform of the selection function for the
mock data, | f|2. At long wavelengths, this resembles a Gaussian
fe=exp[—(kR}*/2] with R,=100 h~' Mpc.
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It now remains to apply the corrections for the selection
function detailed above. Fig. 8 shows | f,|? for the mock
sample, which is very close in appearance to that of the true
data, as intended. At low k, the function resembles a
Gaussian filter with R;=100 A~! Mpc. This implies that
modes with k=0.015 A Mpc~! will have their power
reduced by about 10 per cent by normalization effects;
modes of much smaller k are very significantly affected, and
so this sets the limit on the wavelengths we can investigate.

Applying the corrections as above and converting P (k)
into A%(k) by dividing by the bin size in In & yields the final
estimate for the power spectrum, which is shown in Fig. 9.
The dashed line shows the expected power spectrum, which
is reproduced gratifyingly well, even out to the largest wave-~
lengths. The Poisson error bars seem of a realistic size for
A>100 A~! Mpc, but appear to be a little too small for
smaller wavelengths, where a scatter in power of 10-20 per
cent seems to apply. It is to be expected that sampling effects
would reveal themselves in these bins: as k increases, the
number of modes in a bin of In k rises as k°, so that the
Poisson errors rapidly tend to zero and reveal any additional
scatter caused by sampling a clustered distribution. Note that
this is the opposite of the behaviour which applies for the
correlation function: there, the Poisson error bars become
progressively less realistic at large scales.

5.3 Power-spectrum results

We now apply the same analysis to the real data. Fig. 10
shows the final result: the fully corrected power spectrum for
the z <0.1 sample. Where the power is not significantly non-
zero, we plot 90 per cent confidence upper limits. Taking
these into account, we see that significant curvature of the
power spectrum exists, with a break at 4 ~200 A~! Mpc.
This conclusion is confirmed by Webster’s (1976) limit at
larger wavelengths, which also falls below an extrapolation of
the power-law spectrum at large k. The power-spectrum
index for 2200 A~ ! Mpc must be nz —0.5.

This break in the spectrum is on scales quite close to the
limit of the sample, so it is reassuring that the simulated data

T T T T
Sk L3
FOPRE M
— Q._ .
2 ot
& .
< .

s;_"} ]
Og 3
L n 1 PR S S T ¢ "

0.01 0.1
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Figure 9. The final corrected power spectrum for the mock data,
correcting Fig. 7 for bin size in k space and the volume of the selec-
tion function. The dotted line shows the input assumed power-law
power spectrum, which is recovered in a very satisfactory manner.
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set did show that clustering on these scales could be
detected, if present at the level required by the absence of a
break. Only one realization of the simulated data was dis-
cussed in Section 5.2, but other realizations were run and
these confirm that we do not expect results as low as those
observed in the absence of a break. Both Figs 9 and 10 were
produced using the assumption of uniform sky coverage to
generate the random catalogues, so there should have been
no tendency to suppress that part of the clustering signal
which comes from the sky distribution. We can attempt to
gain a little extra information by extending the sample limit
to z=0.15. The survey was not intended to be complete to
this limit, but we can proceed by assuming that the incom-
pleteness is some isotropic radial function. If this assumption
is false, it can only add spurious large-scale power. This
analysis used only measured redshifts, yielding a sample of
374 objects. The power spectrum is shown in Fig. 11. The
appearance is similar to that of Fig. 10, although the depth
(as measured by the width of | f,|?) has increased by about 15
per cent.

As one further test on the reality of the clustering, we have
investigated the isotropy of the signal by looking at the power
spectra estimated from independent quadrants of k space.
This confirms that the signal does not arise from some
special directions. Our result is not due to improper allow-
ance for anisotropies in the selection function.

We have compared the results with two analytical models.
Suppose the two-point correlation function to be an exact
power-law:

&(r)=(r/ry)~. (27)
The corresponding power spectrum expressed in terms of

variance per unit In k is

Vv
(2m)’

2 2
47K’ 8412 =2 (kro) T(2— ) sin(———z—y)—n
JT

A= (28)

[=0.903(kr,y)'8 if y=1.8]. The ‘standard model’ of galaxy
clustering has long been one with y=1.8, r,=5 A~! Mpc.
However, we do now have some evidence that this over-
predicts the power spectrum at large wavelengths. The
strongest case for this probably comes from the w(8) results
of the APM galaxy survey (Maddox et al. 1990). Their data
can be described by the following power spectrum (Peacock
1991)

4
A% (k) =% 5 y=k/0.025 hMpc™ . (29)
(L+y™)

This gives a break from an effective n= — 1.4 to the scale-
invariant n=1 at around 4 =200 A~ ! Mpc. If we make the
reasonable assumption that the power spectrum of our radio
galaxies is at all wavelengths a scaled version of that for
galaxies in general (Kaiser 1984), then we see from Fig. 11
that our present results are well consistent with the above
model for the APM power spectrum, scaled up by a factor of
about 3.

It is worth noting once again the superiority of the power-
spectrum approach. The correlation function corresponding
to the above model for A%(k) has a break at r=30 2! Mpc.
A glance at Fig. 3 shows that it would be rather hard to
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Figure 10. The final corrected power spectrum for the sample.
Where the power was not significantly detected according to the
Poisson errors, we plot 90 per cent confidence upper limits. The
upper limit at smallest k is the result from Webster (1977). The two
lines show the two models for galaxy clustering described in the text.
The dotted line extrapolates the small-scale clustering: £ =(r/11 A™!
Mpc)™ ¥, whereas the solid line is the functional form which
describes the APM w(8), scaled vertically by a factor 3.3. We can
clearly rule out continued power-law clustering on large scales, but
the power spectrum which describes the APM w(0) appears well
consistent with the data.
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Figure 11. As for Fig. 10, but including data out to z=0.15. This
increases sample size and (more importantly) depth by about 15 per
cent. The appearance is very similar to Fig. 10; this gives some
added confidence that the reduction in power at small k is not due
to systematic effects near the sample volume limit. Although the
sample is incomplete beyond z =0.1, it appears that this incomplete-
ness does not vary strongly over the sky, since no new large-scale
power is detected.

distinguish between the presence or absence of this break
given the fluctuations in &(r) at large r.

6 SUMMARY AND CONCLUSIONS

We have extended Webster’s classical work on the clustering
of radio galaxies, using a redshift survey to look at spatial
correlations without the reduction in sensitivity caused by
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projection effects. As a result, we have been able to make the
first detection of small-scale clustering in these objects. The
derived clustering length, r,=11 A~! Mpc, is in reasonable
accord with the nature of radio galaxies: luminous elliptical
galaxies inhabiting moderate to rich environments are cer-
tainly expected to show enhanced correlations of this order.

We have been unable to reproduce any strong tendency
for clustering to depend on radio power, which had been
suggested by the analysis of an earlier, incomplete, version of
this sample. In retrospect, this may not be too surprising as
the evidence for any strong radio-luminosity dependence of
environmental richness is not as strong as it once appeared.

Having established radio galaxies as valid probes of galaxy
clustering, we turned to a direct power-spectrum analysis in
the hope of constraining clustering on the largest scales. There
appears to be evidence for a break in the power spectrum at
wavelengths 4 ~200 A~! Mpc. At shorter wavelengths, the
spectrum is consistent with a power law of effective index
n=—1.4, but this has to break to n= — 0.5 for larger wave-
lengths. Clearly, there is some way to go before one can claim
to have produced evidence for scale invariance on the largest
scales, but it is encouraging that both this and other pieces of
work are starting to point in the same direction. At last, after
years when each increase of sample depth seemed to show
ever larger structures in the galaxy distribution, the process
may be converging. If we adopt a universal power scaling
factor of 3, then our results imply A?=0.1 at the 128 h™!
Mpc scale singled out by the pencil-beam survey of Broadhurst
et al. (1990). If this number is to be taken seriously, then one
would be forced to conclude that the behaviour seen in the
Broadhurst er al. survey is not the result of very large
inhomogeneities on these scales, and other explanations
must be sought (e.g. Kaiser & Peacock 1991). We note that
other redshift surveys attempting to settle this question must
take into account the very large wavelengths which are under
dispute: depths of several hundred Mpc are required to
probe the scales of interest.

We may hope that the question of the very large-scale
power spectrum of galaxy clustering will be settled in the
next few years, as cosmic background radiation experiments
such as COBE place stronger constraints on the Gpc-scale
spectrum. The next step will be to constrain the statistics of
the fluctuations, to test for the inflationary requirement that
they be Gaussian. We are probably close to possessing suffi-
cient data in deep samples to be able to address this question.
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APPENDIX A: SAMPLE SELECTION

The initial design constraints on this sample were to cover a
volume which was large enough to form an indisputably fair
sample of the Universe, and also to allow tests for streaming
velocities to be carried out to greater depths. Given that the
streaming samples extended to galaxies at z=0.04 and that
Tully had suggested the existence of structure in the Abell
cluster distribution on scales up to z = 0.1, the limit of z=0.1
seemed an appropriate choice. As will be seen, this corre-
sponds to an apparent magnitude of B=17: one is still deal-
ing with relatively bright galaxies, for which completeness in
the optical identifications should be readily attainable. A
lower distance limit should also be set: very nearby galaxies
are lost from the radio surveys through over-resolution.
Also, at low redshift, redshift is not a good distance estima-
tor, which complicates three-dimensional studies. A lower
limit of z=0.01 was selected; it should be possible to make
the sample selection reasonably homogeneous when only a
factor of 10 in distance needs to be allowed for. Both from
the point of view of obscuration, and because of the lack of
radio surveys, the galactic plane must be avoided. To make
the survey boundary relatively simple, the limit | 5| > 15° was
imposed. The ideal is then to select over the remaining 9.3 sr
galaxies with 0.01 <z<0.1 down to some uniform flux-
density limit.

Al.1 Radio selection

The whole sky away from the galactic plane is covered at
radio wavelengths by one of four surveys of roughly equiva-
lent depth: Parkes at 2.7 GHz for 6 <24° Bologna at 408
MHz for 24°<0<40°% Jodrell Bank at 966 MHz for
40°s8=<70% and Bonn at 5 GHz for =2 70°. All these
surveys have had associated with them extensive optical
identification programmes based on radio positions of accur-
acy generally <10 arcsec. Galaxies well above the limit of
the sky survey should have been noted as candidate identifi-
cations if present.

Parkes. The various parts of the Parkes 2.7-GHz surveys
are summarized by Bolton, Wright & Savage (1979). At
| b|> 15°, almost all regions at 0 <4° have been surveyed to a
2.7-GHz limit of 0.35 Jy or deeper. The only exceptions are
a few regions where the closest approach to the galactic
plane is further than 15°: the worst such point is at a =17",
0= —4°|b|=21.9° These regions total well less than 1 per
cent of the survey area, and may safely be neglected. The
situation at 0 >4° is more complicated; the direct 2.7-GHz

survey is complete to only 0.6 Jy in this region. However, the
zone 4° < § <20° was surveyed to 2.5 Jy at 408 MHz by Day
et al. (1966); the objects found were then remeasured at 2.7
GHz. Also, all 4C sources in this zone down to 3 Jy at 178
MHz were observed at 2.7 GHz by Wills & Bolton (1969).
For a spectral index of 0.8, these searches should thus be
complete to respectively 0.55 Jy and 0.34 Jy at 2.7 GHz.
Finally, the zone 20° < J <27° was surveyed to 1.5 Jy at 635
MHz by Shimmins & Day (1968), again with 2.7-GHz follow
up, at which frequency the equivalent limit is 0.47 Jy.

Bologna. The Bologna B2 survey at 408 MHz covered the
declination band 24° < ¢ <40.3° to a limit of 0.25 Jy. Careful
optical identifications were carried out for sources brighter
than 0.9 Jy in three papers by Grueff & Vigotti (1972, 1973,
1979). These cover a region which again is close to but not
precisely | b|<15° The worst omission is an area around
a=22" 8=30° and the total area from our target zone
which is not covered is about 0.2 sr.

Jodrell Bank. The 966-MHz Jodrell Bank survey covered
40.3°<0<71° to a limit of 0.7 Jy at 966 MHz. Accurate
radio positions { £ 2 arcsec) were measured for the compact
sources using an interferometer, and optical identifications
for these were reported by Cohen et al. (1977). The more
extended sources were identified by Porcas e al. (1980).

Bonn. A series of 5-GHz surveys covering most of the
northern sky were carried out during the 1970s at Green-
bank and Bonn. The deepest of these was the Bonn S5 sur-
vey, which eovered ¢ > 70° to a completeness limit of 0.25 Jy
(Kiihr er al. 1981). The S5 survey is also the one for which
the most detailed optical identification work has been carried
out, using VLA maps to produce very reliable identifications
{(Kiihr ez al. 1987).

Giant sources. Even at z>0.01, a few radio sources have
such large angular sizes ( 2 10 arcmin) that they are not easily
recognised as a single object. Such objects have been added
to the sample where known: 0503 —286 (Subrahmanya &
Hunstead 1986); 0744 + 559 (Willis, Strom & Wilson 1974);
0945+734 (Mayer 1979); 10294569 (Masson 1979);
1637 + 826 (Waggett, Warner & Baldwin 1977). There are
doubtless others, particularly in the southern hemisphere,
but such objects must constitute a tiny incompleteness in the
total sample.

A1.2  Flux-density limits

The above flux-density limits translate to the following
figures at the ‘average’ frequency of 1.4 GHz, assuming a
spectral index of 0.8: 0.59 Jy (Parkes); 0.33 Jy (Bologna);
0.52 Jy (Jodrell Bank); 0.69 Jy (Bonn). These are all of a very
similar depth, with the exception of Bologna. This was there-
fore cut back to a limit of 1.2 Jy at 408 MHz (equivalent to
0.44 Jy at 1.4 GHz). The all-sky sample therefore approxi-
mates a sample complete to 0.5 Jy at 1.4 GHz.

A1.3 Optical selection

Given that we are interested in radio galaxies with z<0.1,
what is the appropriate optical limit? A plot of estimated B
magnitude against z for objects of known redshift from the
above surveys shows the relation log;(z/0.1)=0.2(B—17),
with a scatter of about 1 mag. To ensure reasonable com-
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pleteness to the chosen limit of z= 0.1, therefore, a conserva- have pursued spectroscopy of the candidates, and now have
tive limit of B=19 for galaxies of unknown redshift was a total of about 460 redshifts, of which 310 lie in the original
taken to define the initial sample. This yielded 125 galaxies target range of 0.01 <z <0.1. The full data will be presented
of known redshift, plus 454 candidate sample members. We in detail elsewhere (Nicholson ez al., in preparation).
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