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1 INTRODUCTION

SUMMARY

We investigate the validity of the Press—Schechter formalism for calculating the mass
distribution function, f(M), of the bound objects which condense out of a primordial
density perturbation field. We give a revised analysis, which automatically has the
correct normalization and accounts explicitly for the mass in underdense regions. The
resulting f(M) depends on the form of the filter function chosen; in general this
method predicts more low-mass objects than the Press-Schechter formalism. We also
consider the effects of identifying density maxima as the sites of proto-objects. This
predicts an f(M) with a different shape, but again with a low-mass power-law tail
which lies above the Press—Schechter result, unless a very large mass is assigned to
each peak.

Our method allows additional constraints to be added to govern the formation of
certain classes of object. As an illustration, we calculate a mass function for galaxies,
using the criterion that an object must have been able to cool in the time between its
collapse epoch and the present. This produces a mass-dependent overdensity
threshold which can reduce the relative abundance of low-mass objects considerably,
providing a qualitative explanation for the form of the galaxy luminosity function.

wide range of wavenumbers. The limitation to Gaussian
fields may appear rather restrictive, but this is simply a con-

The mass function for bound objects is an important quantity sequence of assuming uncorrelated phases for the various
in cosmology. In principle, this distribution can distinguish Fourier components of the density field (via the central limit
powerfully between different candidate theories for galaxy theorem). Thus, although it is quite possible to analyse non-
formation, including such fundamental issues as whether or Gaussian density fields (see Lucchin & Matarrese 1988 for
not the initial perturbations were Gaussian (see e.g. Lucchin application to the mass function), Gaussian fields arise with
& Matarrese 1988). Unfortunately, it has long been clear that sufficient generality to be much the most important case. Our
the non-linear phases of collapse and merging are sufficiently understanding of Gaussian random fields have advanced
complex to preclude a completely analytic approach to this since the work of PS, notably with the recent surge of interest
problem. Nevertheless, the importance of the issues involved in density maxima as sites for potential collapsed objects
means that even an approximate treatment is of value, [Peacock & Heavens 1985; Bardeen et al. 1986 (BBKS)].
especially in extrapolating the results of numerical studies to The purpose of this paper is thus to review the PS formalism
new parameter regimes and to rare objects. and attempt to understand why it works so well in practice,

An early landmark in this field was set by Press & despite the fact that the analysis contains several features
Schechter (1974; PS), who gave a prescription for estimating long recognized as unsatisfactory. We consider modifications
the mass distribution function for a hierarchical Gaussian of three kinds: (i) accounting correctly for the fate of material
density field. Interest in this formalism has recently been in underdense regions, which was not treated by PS; (ii)
strong, motivated by numerical simulations which appear to incorporation of the recent results on density peaks and (iii)
show good agreement with the PS result (Efstathiou et al considering a simple model for the effects of cooling, to
1988; Carlberg & Couchman 1989). These results have led estimate the mass function for ‘luminous’ objects.

to diverse investigations using the PS formalism, including
the formation epoch of the first massive galaxies (and hence

quasars; Efstathiou & Rees 1988) and the expected gravita- 2 MODIFICATIONS OF THE PS FORMALISM
tional-lens properties of a Cold Dark Matter universe 2.1 Basics
(Narayan & White 1988). ’

The PS analysis covers most situations where the power We begin by outlining the basic PS result. The critical
spectrum of initial density perturbations contains power at a concept is that of filtering the initial density field d(x)= dp/ 0.
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A large class of density fields will be dominated by fluctua-
tions on some small physical length scale, which collapse
non-linearly and then cluster together/merge to produce a
more massive member of the hierarchy. The PS assertion
(which we adopt) is that the location and properties of these
objects can be estimated by an artificial smoothing (or filter-
ing) of the initial linear density field. If the filter function has
some characteristic length R;, then the typical size of filtered
fluctuations will be ~ R, and they can be assigned a mass
M~ poR}. The exact analytic form of the filter function is
arbitrary and is often taken to be a Gaussian for analytic
convenience. The implicit assumption has been that different
choices of ‘reasonable’ filter functions (lacking large side-
lobes or k-space wings) would yield rather similar results.
This turns out not to be the case, as we shall see below.

The argument now proceeds in integral terms. For a given
R;, the probability that a given point lies in a region with
0> 9 (the critical overdensity for collapse) is

p(6>0,.|Ry)= [1 erf(‘/_aRfH (1)

where o(R;) is the linear rms in the filtered version of 6. The
PS argument now takes this to be proportional to the prob-
ability that a given point has ever been processed through a
collapsed object of scale > R;. This assumes that the only
objects which exist at a given epoch are those which have just
collapsed; if a point has 0 > 0, for a given R;, then it will have
J =0 when filtered on some larger scale and will be counted
as an object of the larger scale. The problem with this
argument is that half the mass remains unaccounted for; this
was amended by PS simply by multiplying the probability by
afactor 2.

This integral probability is related to the mass function
f(M) [defined such that f(M)dM is the comoving number
density of objects in the range dM| via

Mf(M)]po=|dp/dM|, (2)

where p, is the total comoving density. Thus,

29, dln o
fM) == | i ag | ¥R 403 (3)

The factor of 2 ‘fudge’ has long been recognized as the
crucial weakness of the PS analysis. What one has in mind is
that the mass from lower density regions accretes on to
collapsed objects, but it does not seem correct for this to
cause a doubling of the total number of objects.

2.2 The cloud-in-cloud problem

To improve on the PS analysis, it is necessary to treat the
points with 6 < d,, explicitly. The real problem with the above
discussion is that it is local; it takes no account of how the
fields at several different R; values are related to each other.
Consider a single field point and think of the trajectory taken
by 0 as a function of Ry; for a set of very widely spaced R;
values, the fields will be essentially independent samples of
Gaussians with the appropriate variance o*R;). Now, if
o(R;)— © as R;~0 (ie. we are dealing with a hierarchical
density field that lacks a low-wavelength cut-off), then it is
certain that 0 will exceed 0, on some small scale. The

important question is then to find the largest filter value for
which 6 is equal to the threshold, known as the first upcross-
ing of the process d(R;). This finds the largest mass which
has collapsed about that point by the present epoch, destroy-
ing in the process any sub-structure.

It is easy to write down a framework for calculating the
probability distribution of these upcrossing points, as follows

&

s |, (8.,6)db (4)

P(>Ry)=pg(6>0d.)+ J'_ dé

where pg is the Gaussian distribution. This says we should
divide points at R, into two classes. Those with 6 > §_ clearly
have =6, for some larger filter, and are therefore asso-
ciated with objects of scale > R;. For all points below the
threshold, we expect that there is some probability, p,,,, that
subsequent filterings might at some point result in having 6
above the threshold; if we can calculate this, the problem is
solved.

This prescription has the important property that it is
automatically normalized. From the argument given earlier, it
is clear that p,,~1 as we go to very small scales. The PS
argument corresponds to taking only the first term in the
above equation and doubling it. It is far from obvious that the
two terms are equal, so one might doubt the validity of the PS
factor 2; we shall see that such doubts are generally well
founded.

2.3 Survival probabilities

The problem of calculating the upcrossing probabilities is
mathematically rather nasty, due to the correlations between
0 at various R; values. Consider a pair of density fields at a
given point, 4, and J,, and define the dimensionless ampli-
tude »

O(Ry)
o(Ry) '

V=

(5)

Taking fields v, and v, in terms of their respective rms
values, we have

dP(V2|1’1)= 1 ex _(V2—51’1>2 (6)
dv,  Ra(l-e PP T o= |
where we have adopted the notation used by BBKS
0_2
=t (7)
001002
V .
oﬁ:(zmj FRI K, i=1,2; 8)
2 4 2j 2 g3
3=y | K BRI &k )

As usual in this subject, the statistics of the field are specified
by a series of moments over the power spectrubl [0,
filtered by the appropriate F (k) factors (we use the Fourier
transform convention which introduces an arbitrary normali-
zation volume, V).
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Analogous expressions may be derived for the case of
several coupled fields. However, the integration over such a
distribution to find the probability that all the filtered fields
are lower than the threshold is not, in general, straightforward.
Certainly, taking the limit of such a procedure for an infinite
number of (closely correlated) fields is not an attractive
prospect, and we have therefore adopted a more intuitive
approach, as follows. Once the field has been filtered by a
large amount, the result is essentially independent of the
original value and the probability of exceeding the threshold
is just the unconstrained value; the same is true for all sub-
sequent filterings where R; changes by a further large factor.
The survival probability (the probability of always remaining
below the threshold; p,=1—p,,) is then the product over
these independent fields,
ps(éc)=n p1(6<6c)' (10)
Imagine a sequence of fields where we progressively reduce
the spacing in R;; the above relation will clearly hold until the
separation is a factor of order unity in R;. We will then have
encountered the analogue of a coherence length in log R;.

This suggests the following simple ansatz for the survival
probability,

dln R,

mps=J lnp(6<6c|Rf)—’ (11)
. A

where A is the critical increment in In R; for effective
independence (at this stage, A is simply a parameter to be
determined, and will depend on the power spectrum). Note
that this expression contains the unconditional probability
p(6<06,|R;), rather than p(8<6.|R;, 6;), so that p, is
independent of d,. This cannot be precisely true, but does
seem to be a good approximation (see below).

We can infer the value of A as follows. Consider the set of
all points which have 4 <0 for some value of R = R,); the
above argument suggests that the probability that they will
remain underdense for all subsequent filterings up to R;= R,
is given by p(0)=(R,/R, )" 2/ - ie. p, falls as a power law in
R;. We can now use equation (6) to find A by evaluating
dln p,/dIn R;at R, = R,. Here, we calculate what fraction of
underdense points are scattered above the 6 =0 threshold by
an infinitesimal amount of filtering. The problem is simpli-
fied at this stage as we do not need to take into account the
results of any configurations intermediate between the initial
and final filterings. Thus, we use the initial rate of change of
the conditional probability to find the slope of the power law
determined by equation (11). For Gaussian filtering
[F (k)= exp( —k?R?})), we have

e=l _52_0 (U—i—ii) [In(R,/Ro)'=1~3gHIn(R, /R, (12)
Oy Oy

Inserting this into equation (6) and integrating over v, and

v,, the upscattering probability can be written [to first order

inIn(R,/R,)] as

p(v2>0|v1<0)=2—7g1n(R1/R0)J J e " dy dx
2n 0 x
7
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[reversing the order of integration, and using p(v, <0)=3
initially]. Hence, we obtain an expression for the parameter
A,

In2 2 47 -1/2
A=%[ﬂi—ﬂ} - (14)

It is straightforward in principle to derive the correspond-
ing expressions for other filter functions. In general, one must
find the analogue of the function g and set A=(xIn 2)/g.
This will involve k-space integrals over derivatives with
respect to R; of the k-space filter function. Gaussian filtering
is analytically convenient, in that these integrals reduce to
moments of the power spectrum. We shall therefore give
results for Gaussian filtering only in what follows. However,
we emphasize that the analysis is general and can, in prin-
ciple, be applied to any differentiable filter function.

This completes the prescription needed to evaluate
survival probabilities for field points. It should be imme-
diately clear that this may in general lead to results rather dif-
ferent from the original PS formula. Differentiate the
fundamental equation (4) to obtain the differential distribu-
tion of R; values; in the limit of small Ry, where p,,~ 1, this
becomes simply

dp _,dp,
S SO e 15
dR; ‘dR; (15)

As the survival probability only goes to zero as a slow power
law p < R!" 2% the possibility is raised that this term might
tend to dominate the mass function for small R;. We will see
below that this is indeed the case; this formalism will usually

predict more low-mass objects than the original PS formula.

2.4 Sharp k-space filtering

It is clear that this ansatz will not work in all cases. When the
first derivative of k-space filter function with respect to R;
does not exist, it is possible to have
e=1-0In(R(/R,), (16)
and our procedure will fail. The main example of this case is
sharp truncation in k-space. This has been investigated
recently in the context of the PS model by Bond et al. (in
preparation 1989) and has some appealing properties.
Crucially, the field in this case executes a random walk from
0=0 at R;= ; each new slice of k-space added is indepen-
dent. In this case, one can use the following argument to
deduce the survival probability (Chandrasekhar 1943). For
0<0, the probability density of points which have
upcrossed at a larger R; must, by the symmetry of the
random walk, simply be the reflection in the threshold of
those points above the threshold. The upcrossing probability
is then

_exp[—(d— 26.)'/20°]
Pup exp(—6°/26%)

(17)
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and the total probability of upcrossing is

o S,
s |, (8., 8)dd=— J x exp[— (6~ 26.)/20%] do
e dé 2n

=pg(>9.). (18)

Miraculously, this is simply the original PS term; the analysis
by Bond et al. supplies the PS factor of 2 without needing to
cheat. However, as most filter functions that one might want
to consider are differentiable, this is a rather special case.

3 RESULTS
3.1 Power-law spectra

These results can be cast in a reasonably simple form for
power-law power spectra, | d,|? < k™. For Gaussian filtering in
D dimensions, we have

=22 19
ou(Ro) \R; 19)
R 2D \'?
—*=( ) , (20)
¢ \n+D+2
n+D \?
21
¥ (n+D+2) ’ (21)
2R R n+D)f2
ETAS -
D—1/2
A=nln2[n ] (23)
If we define
‘VEA—, (24)
Uo(Rf)
then we have the limiting behaviour
pv)~ y P () <), (25)

Fig. 1 shows the results of our procedure for power-law
spectra, in the form of P (> v) curves. This shows explicitly
the two terms in equation (4), and their sum. These are for
random fields in three dimensions, but the above equations
show that the result depends only on n + D. The clear result
in all cases is that the second term in equation (4) is generally
smaller than the first. For large v, we have exactly half the PS
result.

Fig. 2 now shows these results in differential form,
dp [d In v. As from equation (2),

M (M) 0y = ( P v) ( o= L) (26)

and the second term on the right is a constant for power-law
spectra, we see that these plots are identical in shape to
M?f(M). It is worth emphasizing the advantage of writing the
mass function in this form. It allows us to include, for

O T B S T

p(>v)

3D Field points

0.01
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Figure 1. The integral probability distribution for first upcrossing
points of a Gaussian-filtered three-dimensional random Gaussian
field. The filter radius of upcrossing is specified in terms of v=4,/
oR;). Three curves are shown; the fraction of mass which lies
above the threshold at a given scale (dashed); the fraction which lies
below the threshold, but lies above the threshold on some larger
scale (dotted); and the total (solid). The first fraction is always the
larger, and corresponds to half the PS result.
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Figure 2. The total results of Fig. 1 in differential form, dp/dIn .
Since M?*f(M)/p,=(dp/dIn v)(dIn v/dIn M), these plots are
identical in shape to the multiplicity function; M2f(M)/0, gives the
fraction of the mass of the universe carried by objects in unit range
of In M. The PS result (which is the same for all spectra) is shown

dotted. Our prescription predicts more low-mass objects in all
cases.

example, a criterion on collapse from cooling (see Section 5)
or mass-dependent biasing, by appropriate calculation of the
second term on the right-hand side.

The pronounced difference in low-mass slope between
Gaussian and sharp filtering is immediately apparent in these
dlagrams The PS formula has P (< v)e« v for » <1, whereas
in our prescription the survival probability p, dominates. In
three dimensions, with M« R}, this leads to a low-mass slope
in our prescription of
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sz(M)ocM[("”)/ls]l/z/” (27)
compared to the PS result
M2f(M) o< M+, (28)

Hence there are more low-mass objects provided that
n> —2.8. For n= —2, the difference in slopes is 0.07, for
n= —1itisabout 0.2.

The solution to the PS problem then turns out to be rather
different from that originally envisaged, except for rather
special choices of filtering. Before advocating these mass
functions as an improvement on the PS formula, however,
there are further modifications to consider.

4 THE PS FORMALISM IN TERMS OF
DENSITY MAXIMA

Another area of incompleteness in the original PS argument
is its lack of detail over exactly how overdense regions are
related to bound proto-objects. This shortcoming has been
addressed by the recent work on density peaks in Gaussian
fields. Regarding these as the sites of potential collapsed
objects suggests some modifications of the PS formalism, as
follows.

In BBKS notation, the number density of peaks in a
Gaussian field in D dimensions is

1

(2:1)(”1 1)/2R£‘ e’ /ZG(}’, yv)dy,

Ry dv= (29)

where v= /0y, Ry=\D 0,/0, and y= 03/(0,0,) in terms of
2ith moments over the power spectrum, ¢?. The function G

is given by
L)
G(y, %) r ()exP 2 (1-%7) (30)
xx)=1 Flx
S [2(1 ="
In one dimension, F(x)=x (Rice 1954), whereas

F(x)=x?>+exp(—x?)—1 in two dimensions (Bond &
Efstathiou 1987). F(x) is given for D=3 by BBKS equations
(A1.9)and (4.5).

A simple peak version of a mass function now suggests
itself. On a scale R;, consider the fraction of mass associated
with a peak above the threshold, MN (> v)/p,, to give the
integral mass probability distribution (where M is the mean
mass associated with peaks above threshold v on a filter
scale Ry, and N, is the integral number density of peaks). If
M /Ri is a constant, then we obtain

(31)

dinv
dln M/

F(M)= no(v) (

which was given implicitly by Efstathiou & Rees (1988) and
explicitly by Bond (1989). This peak f(M) is very similar in
form to the PS formula, modified only by the G(v, yv) factor.
As this goes to a gonstant for v <1, the numbers of low-mass
objects cut-off no more abruptly than in the PS formula,
which is in contradiction to an assertion by Lucchin &
Matarrese (1988). Their result was arrived at by assuming
the high-v limit for n,, which has n, o« v3exp(—v?/2);

Press—Schechter cosmological mass function 137

however, for low masses v <1, and their expression is thus
invalid.

The physical basis for this analysis is that any material
within a distance ~ R; of a peak which has collapsed is
assumed to be part of a system with mass at least ~ o, R;.
This seems a better physical motivation than PS, but it
shares the same deficiency that connected regions assigned
amass M are not guaranteed to have the appropriate volume
~ M/p,.

There is an interesting contrast between this formula and
PS concerning the normalization of f(M); the PS formalism
automatically accounts for all the mass; the M(R;) relation
simply fixes the number density of objects. For the case of
peaks, the number density is determined, and only one
choice of M, (R;) will give a correct normalization. BBKS
showed that the total density of peaks (of any v) was about
0.016R;>, so we might hope for M, =630,R3. We now
consider what this mass should actually be.

4.1 Mass estimates

There is a variety of choices for peak mass estimates. The
simplest is the volume of the filter function M= (27)*20, R}
(as used by e.g. Efstathiou & Rees 1988). Here, we view the
filtering process as producing the mean density within some
volume; an object of size ~ R; is expected to collapse when
this mean overdensity reaches &, = 1. Note that the collapse of
this volume only requires the filtered 6> d, at one point - in
this respect artificial and physical filtering differ markedly.
This is certainly reasonable for a spherical top-hat filter and
a spherically symmetric mass distribution (6,=1.69 in this
case).

The comparison with the spherical filter provides an
alternative method of assigning a mass to peaks. In some
sense, the equivalent sphere to (say) a Gaussian filter should
be the sphere (of radius R,,,) which produces the same rms
as the applied filter of scale R;. In k-space, the Gaussian and
spherical filters agree to second order in k if Rsph=J5Rf.
The volume of this sphere is

V=4?” 5 R, (32)

which is a factor 2.97 larger than (2:7)*2R;. Although the
detailed Rj,,(R;) relation for equal rms depends on the
power spectrum, it is within 20 per cent of this factor for
n<0.5, and so there might be some justification for taking a
uniformly larger mass.

An alternative viewpoint is that non-linear development of
small-scale perturbations into collapsed objects may be
thought of as acting in a sense like a genuine physical filter on
the remaining linear portion of the power spectrum. This
leads us to consider the problem of the density profile of a
peak. Peacock & Heavens (1985) attempted to produce a
peak mass estimate by modelling the peaks as triaxial
spheroids, and estimating the volume of the region with
0> 0. According to this prescription, there is a distribution
of masses for a given v; however, we shall not be particularly
interested in this distribution as any dispersion in mass at a
given R, will be dominated by the fact that we are consider-
ing a wide range in R;. The mean value of log M may be
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approximated (for values 0.5<y<0.8 of practical interest)
by

2°"(47)/3]0o R+
QT (33)

[y*+(0.9/%)™]

For a spherical peak with quadratically varying overdensity,
the bound mass is a factor (5/3)32 larger than the above
expression. Certainly, it may seem reasonable that low-v
peaks should have lower mass; peaks with v=0 will tend to
sit in regions of larger scale underdensity (cancelling the
small-scale overdensity), and hence the ~ pORi of material,
which initially surrounds the peak, may not be accreted
following central collapse.

We shall not consider the effects of this specific mass
estimate of f(M) in detail. It is sufficient at present to note
that, together with the earlier discussion, there may well be
grounds for wanting to adopt a peak mass either smaller or
larger than the strict M =(2x)*?p, R} relation; we shall see
below that this can have important consequences for the
mass function.

In passing, we should mention the relation of this discus-
sion to the topic of the angular momentum acquired by a
collapsed density maximum, which was studied by Heavens
& Peacock (1988). In that paper, we showed that the median
value of the dimensionless spin parameter, 4, scaled approxi-
mately as ()= 0.08/v (this result is independent of the over-
density criterion used to define the peak boundary). We have
now confirmed this dependence for low peaks down to
v=0.01. For the above mass estimates, we have v« M?¢,
where a=(n+3)/6 for the simple mass estimates, or
a=(2n+6)/(3n+21) for the full peak mass estimate. If the
effective spectral index on scales of galaxies is n= —2, as
would be expected in the CDM model (see Section 6), then
a=0.15 whatever mass estimate is used. Thus, objects with
masses ~ 1077 M, should be rotationally supported, where

M, is the mass scale which is collapsing now, i.e. o(M_)=9,.

4.2 Survival probabilities and peaks

The previous section has shown that, generally, the fraction
of mass associated with a peak on a given filtering scale will
be small. In one dimension, the number density of all peaks is
(27tR )™ !, which encloses a fraction

3+n)]/2

R
= -2 M
fpk—(zn) ' - 4

Ry

(34)

for Gaussian filtering with M=(2x)2p,R;, and ignoring
peak overlap. In three dimensions, the corresponding expres-
sion is '

(35)

i} +5\%2
f,,k=0.016R*3(2n)3/2R§=(”1—5) .

These fractions are 0.5 for power spectra of practical
interest, so it is clearly vital to treat correctly the material
which lies outside a peak on a given scale.

We can attack this problem in much the same way as we
did for field points. Material which lies outside a peak on one
scale can sometimes lie inside a peak on a larger filtering

scale. For very low thresholds, the probability of this
occurring clearly goes to unity. Thus, as with field points, we
can write an expression which is automatically normalized

P(>R)=f(6>0)+ (1~ fou)Pup- (36)

The critical term p,,, is the analogue of the upcrossing prob-
ability; the probability that a point outside a peak will find
itself inside one on some larger filtering scale. Following our
previous reasoning, we again make the ansatz that p,, may be
estimated by saying that random fields should be effectively
independent after some increment A in In R;,

0

ln[l—pup]{ o1 = (8> O | RY) TE (37)

0

The problem with this is that there is no reason to suppose
that the appropriate value of A for this problem will be the
same as the one we deduced for the case of field points.
Indeed, we shall shortly see that they are in fact very
different.

Filtering a random field may remove or create peaks, and
almost all peaks will be lower as filtering reduces the
variance of the field. Nevertheless, for a small amount of
smoothing, almost all peaks will be at essentially the same
positions and the number above a threshold will change only
by a fractional amount of order dR;/R,. However, all these
peaks will be more massive, due to the increase in R;. Thus,
to first order in OR;, the only change in the fraction of mass
which has been inside a peak is due to the mass swept up as
the peaks ‘bloat’.

We can now use the same trick as for field points. Con-
sider an initial threshold of zero, and argue that the fraction
of mass not associated with a peak must fall as some power
law in R;, the slope of which depends on A. As we can find
the initial rate of changing of this fraction through the above
‘bloating’ argument, the appropriate value of A may be
deduced. If we call the fraction of mass that has ever been
inside a peak Fy, then we denote the fraction inside peaks
above zero threshold on a given scale by f,(0). The ‘bloating’
argument says that, in this initial case,

dR
dFp=ful0OD =, (38)
f
where D is the number of dimensions. In terms of the frac-
tion never inside a peak, the initial logarithmic rate of change
of survival probability is

- Dfpk(O)
1 —fpk(o) ’

and as the ansatz for p,, asserts that the left-hand side of this
equation is always equal to In[1 — £,,(0)}/A, we obtain

_ L= £u(O)Inl1 ~£,(0)

P Dfpk(O)

For the small values of f,,(0) that are typical in three dimen-
sions, this tends to A= 1/3, which is roughly an order of
magnitude less than A 4.

This is an amusingly crude argument, when one considers
the complications of solving exactly for the probability of a

dInR;

(39)

A

(40)
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point lying inside at least one set of peaks on many different
filtering scales. Nevertheless, as we shall see, it does seem to
work. The argument is designed to give the correct slope for
f(M) at very low masses; because f(M) looks roughly like a
power law with an exponential cut-off, it is therefore perhaps
not so surprising that the overall shape can be constrained by
this ansatz.

4.3 Results

We show the results of the above procedure for Gaussian-
filtered power-law spectra in Fig. 3, in the form of dp/dIn v.
Both figures adopt the simple mass estimates (‘/ﬂpo R; for
D=1, (2x)*2p,R} for D=3). Comparison with the field-
point results shows that far fewer low-mass objects are now
predicted. In one dimension,  these peak f(M) curves
resemble the PS formula, although in three dimensions there
are generally still more low-mass objects than predicted by
PS.

It does seem reasonable that the peak f(M) should predict
fewer low-mass objects. In the field-point calculation, a point
is assigned to mass > M if it exceeds J, on that scale. As one
point at &, corresponds to the collapse of a whole region,
however, the field-point calculation will assign too few points
to large systems, and thus overestimate the abundance of
low-mass objects.

dp/dlnv
0.1

0.01

1078

0.1

dp/dinv

3D Peaks

0.01

1 " a3l " i a1l

1072 0.01 0.1 1

v

Figure 3. The mass functions for peaks in differential form, dp/
dIn v (the analogue of Fig. 2 for field points). (a) In one dimension,
(b) in three dimensions. Again, the PS result is shown dotted. Note
that the numbers of low-mass objects predicted are lower than in
the field-point case.
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The precise slopes of these curves should not, however, be
taken as having too much significance. The asymptotic
behaviour resulting from dp,,/dM is

sz(M) e M‘lnll = fx(ONA(DA) _ prk(o)/[l ‘fpk(O)], (41)

which will change according to the mass estimate we use. For
field points, the low-mass slope depended on the analytic
form of the filter function. For peaks, this seems less impor-
tant, but the question of the M(R;) relation (which is non-
trivial for all but spherical top-hat filters) becomes crucial.
As we have seen, this formalism generally predicts more low-
mass objects than PS. However, this is only true if the above
mass dependence is less rapid than the PS value M("+Di(2D),
Thus, if

n+D

0)> 222
for(0) n+3D

(42)

then the low-mass part of the mass function will lie below
that predicted by PS. The equality of the slope requires a
mass larger than (2:7)*20,R; by only a moderate factor; 1.7
forn=0.

Comparing our mass functions with the simulations of
Efstathiou et al. (1988) provides some encouragement for
the peak models. For small n, the N-body functions under-
shoot the peak of the PS distribution by a factor ~ 1.4; the
peak models which use the simple mass estimate undershoot
by a larger factor than this, but the trend is qualitatively in
the right direction. The N-body simulations at present lack
the dynamic range to establish the low-mass slope directly,
but simple considerations of probability tell us that there
must be an excess of low-mass objects if there is a deficit
around M,,.

In summary, if we believe that the appropriate mass to
assign to a peak is indeed rather larger than the filter volume,
the mass function may not be so different from the PS result.
The theoretical grounds for such a choice are, however,
hardly compelling; if the PS curve resembles what is seen in
N-body simulations, this must look more than ever like a
happy accident.

4.4 Numerical experiments

Given the approximate nature of some of the arguments we
have used, it seems important to verify that they do provide a
solution to the problems we have posed. Accordingly, we
show in Fig. 4 the results of some Monte Carlo simulations,
where the mass associated with each point has been evalu-
ated explicitly by considering multiple filterings of a realiza-
tion of a Gaussian field.

We considered one-dimensional arrays of 2!6 points, and
cubes of side 2°. The fields were then filtered (via FFT) by
successive steps of 5 per cent in R; (smaller discrete
increments in In R; produced essentially identical results). A
running check was performed at each new filtering on
whether a given grid point was associated with a collapsed
object on that scale. This was defined by filtered 6> ¢ for
field points. For geaks, we required the point to be inside a
volume (27)°/?Ry¢’ centred on any peak with ., > d.. The
simulations were run until convergence in maximum mass
occurred, typically for v=0.01 - i.e. until the initial rms had
been reduced by a factor = 300. The results agree well with
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1D Peaks and Field points

dp/dinv
0.1

0.01

T ™ Ty

[ ® = 10  Grid: 84°

dp/dlnv

0.01

Figure 4. The results of our survival-probability ansatz compared
to experiments on numerically generated Gaussian fields. (a) The
one-dimensional results. The ansatz for peaks is shown as the full
line, with the filled squares showing the numerical results. The
circles are for field points, with the ansatz shown by the dotted
curve. (b) The peaks mass function in three dimensions. The PS
result is shown on both figures as a dashed line.

those calculated using our ansatz, although the 3D results are
rather noisy.

5 COOLING AND THE GALAXY LUMINOSITY
FUNCTION

Having discussed the mass functions for collapsed objects in
a hierarchical universe, it is interesting to consider how these
may relate to reality. The interpretation of the mass functions
is straightforward when considering only ‘haloes’ of collision-
less dark matter, but is more complex for baryonic matter,
where we must ask if the matter has been able to dissipate
and turn into stars. This question was analysed in a classic
paper by Rees & Ostriker (1977), and has been reconsidered
in the context of CDM by Blumenthal et al. (1984). Essen-
tially, the point is that in the early universe, all forming struc-
tures can cool; a set of merging objects will create stars from
the gas between them and subsequently will be identified as a
single stellar system. Baryonic substructure can thus also be
erased — unless star formation in the first generation of the

hierarchy is so efficient that all gas immediately becomes
locked up in compact clumps of stars. This seems implaus-
ible; the low binding energy should allow supernovae to
unbind the matter (Dekel & Silk 1986), leading to a very low
overall efficiency of star formation. Indeed, the high fraction
of baryonic material in galaxy clusters, which is in the form of
gas, may be indicative of such a process having taken place.

In order for dissipation to occur, however, the redshift of
collapse clearly needs to be sufficiently large that there is
time for an object to cool between its formation at redshift
Zeo0l (When 6p/p = 8,) and the present epoch. In other words,
the mass exceeds M if 6(M)> 8 [1 + 2 ,(M)]. Once z,(M)
is known, we can calculate the required mass-dependent
threshold v(M)= 06,1+ 2, (M)}/o4(M) and insert this into
equation (26). Section 5.1 calculates z,,(M).

5.1 Collapse redshifts for effective cooling

The cooling function for a plasma in thermal equilibrium has
been calculated by Raymond, Cox & Smith (1976). For an
H +He plasma with Y=0.25 and some admixture of metals,
their results for the cooling time [#.,,;=3kT/2A(T )n] may
be approximated as

1Y}

t =18x10* |—2—
cool(yr) (MOMPC -3

-1
) (T3P + 0.5, T3 )7,

(43)

where Tg=T/108K. The T~ ! term represents bremsstrah-
lung cooling and the T3/ term approximates the effects of
recombination radiation. The parameter f,, governs the
metal content; f,=1 for solar abundances; f,,=0.03 for no
metals. In this model, where so far dissipation has not been
considered, the baryon density is proportional to the total
density, the collapse of both resulting from purely gravita-
tional processes. py is then a fraction Q5/Q of the virialized
total density. This is itself some multiple f, of the background
density at virialization (which we refer to as ‘collapse’)

Pe=fopo(1+2.). (44)

Using o,=2.78 X 101Q h? M, Mpc~3, we obtain

teoal Ho ' =660(£.Qph) (1 +2.) Ty "+ 0.5, T3 %) 7",
(45)

The virialized potential energy for constant density is 3GM?/
(5r), where the radius satisfies 4mp.r3/3=M. This energy
must equal 3MkT/(um,), where u=0.59 for a plasma with
75 per cent hydrogen by mass. Hence

T/K =105} M/102M o, */*(f.Qh*)3(1 + z,). (46)
The criterion for formation of a galaxy by the present is that
the cosmic time since z. is some multiple f, of ¢, (for
example, a spherical body in quasi-hydrostatic equilibrium
has f,=2; Rees & Ostriker 1977). So, for Q=1, we must
solve

Fiteon =3H; 1= (1+2)7) (47)

If recombination cooling was important, the solution to this
would be

(1+2z.)=(1+M/M_,)*>, ' | (48)
where
Mo/ Mo =101 f, fPQ Q712 (49)
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T= 108K, this equation for z, will be a reasonable approxi-
mation up to z,= 10, at which point Compton cooling will
start to operate. Given that we expect at least some enrich-
. ment rather early in the progress of the hierarchy, we shall

E For high metallicity, where bremsstrahlung only dominates at

' keep things simple by using the above expression for z.

The effects of this cooling threshold on the mass function
are illustrated in Fig. 5. At low masses, z,,; =0 and the mass
function is unaffected by cooling. At high masses, the cooling
time is long for masses of order M, and M?f(M) peaks at a
much smaller mass. The sensitivity of this characteristic mass
to M, is not very high; for n=0, it changes by a factor of ~
10 when M, is altered by a factor of 100. Note that includ-
ing bremsstrahlung makes little difference, because the virial
temperature of the objects near the peak in M2f(M) are
below 108 K. As the mass functions with and without cooling
coincide for low masses, but given that cooling of massive
objects is ineffective, probability in the mass function must
accumulate at intermediate masses. Thus, the number of
faint galaxies relative to bright is decreased. If M <M.,
then there is a power-law region between these two masses
which differs from the PS slope; M2f(M)oc Min+3)/61+2/3) ¢,
there is an effective change in nto n+4.

We should not claim too much from the above analysis, as
several potentially important points are neglected. First,
erasure of baryonic sub-structure may be imperfect, which
would lead us to underestimate the numbers of low-mass
objects (White & Rees 1978). Secondly, the criterion of
equating cooling time with look-back time will work only if
an object is able to cool undisturbed over this time; if sub-
sequent generations of the hierarchy collapse while the
object is still cooling quasistatically, then the gas will be
reheated and collapse may never occur (see White & Rees
for this point also). Objects are immune to this effect if the
cooling time is shorter than the free-fall time, which turns out
to be simply a criterion on mass (see e.g. Efstathiou & Silk
1983). If we relate collapse time [t =(37/32Gp,)'?] to
cooling time via f.,, =t then the above figures for
recombination cooling yield a mass

Mcoll/M®=1013V5ft—1fm989_1' (50)

This is of the same order as M, and so very massive struc-
tures may be truncated still more abruptly than we have
assumed above.

Nevertheless, we feel that the qualitative point that cooling
should lead to a steepening of the luminosity function, simply
through probability conservation, is an important one. It is
certainly a more appealing alternative than to postulate ad
hoc variations in M/L in order to reconcile the observed
luminosity function with the PS low-mass slope.

6 APPLICATIONTO CDM

We now illustrate the results of this paper for the ‘standard’
Cold Dark Matter spectrum (e.g. BBKS). This has an effec-
tive spectral index n which increases with filter length. For
galaxies, n.s= — 2, whereas for groups/clusters, n4=0. The
masses we quote may be converted into velocity dispersions,
following Narayan & White (1988). Their calculation was
based on the spherical model, for which virialization
(collapse by a factor of 2 from maximum expansion) occurs
at a density contrast with respect to the background of 176
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F (@) M_=10M
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M? £(M)/p,
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Figure 5. The mass functions resulting from the PS formalism with
the adoption of the cooling threshold criterion [d,—d(1+ M/
M, The solid lines show the mass functions with cooling, and
the dashed lines show the mass functions without cooling; the two
sets of curves coincide only at very low masses. M, is the mass scale
with o(M )=9..

Note (a) the relative insensitivity to M., and (b) that over several
orders of magnitude in mass, the relative numbers of low-mass
objects are greatly reduced by cooling.

(if Q=1). The circular velocity of an orbit around such a
body then follows as
V,/kms™'=(M[105*M)3(1 + z,)//2Q 13113, (51)
for virialization at redshift z,. In practice, a virialized system
will tend to relax towards the isothermal sphere, for which
the velocity dispersion is o,= VC/\/E. This relation is quite
robust, as it depends on only the sth power of the virialized
density contrast.

The mass functions for CDM depend on the normaliza-
tion of the power spectrum. The most common method is via
the integral over the correlation function, J,(10A~!
Mpc)=270h3 Mpc® (Davis & Peebles 1983), as this is
rather insensitive to non-linear corrections. This yields
results very similar to those obtained by requiring the linear-
theory rms to be unity in spheres of radius 8 2~! Mpc. One
must also specify a bias factor, b, and Hubble parameter #.
Since the CDM spectrum is not a power law, these para-
meters may not be factored out in a simple way. However, to
avoid complication, we show results for one set of para-
meters, designed to be in the middle of the commonly dis-
cussed range. The effects of varying these parameters is not
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Figure 6. The predicted mass functions for CDM, using Gaussian
filtering with M=(2x)*?0,R{ and .= 1.69. (a) The mass function
for ‘haloes’. Working from the right at the high-mass end, the three
solid curves show the peak ansatz, PS, and the ansatz for field
points. The hatched area is the group multiplicity function from
Bahcall (1979). (b) The same as (a) but for ‘cooled’ objects. The
hatched area is the fit to the galaxy luminosity function from
Efstathiou, Ellis & Peterson (1988), with a closure mass-to-light
ratio.

vast, and can in any case be approximately inferred by com-
parison with power-law spectra. We adopt A=0.7, b=2,
M o =108M,.

The result for the various mass functions we have
considered, with and without cooling, is shown in Fig. 6.
These curves assume 6,=1.69.

6.1 Comparison with luminosity functions

For comparison with observation, consider the galaxy and
cluster luminosity functions in Schechter form

.k __l; - ~L/L‘£f
¢—¢(L*) e = (52)

The corresponding luminosity density is ¢*L*I'(2— a).
Comparison ~ with  the background density of
2.78 X 10"'QA2M, Mpc ™3 gives the equivalent of L* in mass

* _ Po
M “ S T—a) (53)

For galaxies, we take a=1.07, ¢*=0.0156 A3 from
Efstathiou, Ellis & Peterson (1988), which yields

M*=10'32Q h~'M. Although this value assumes constant
M/L, it may be thought of as the effective total mass corre-
sponding to an L* galaxy, as these dominate the luminosity
density. This is a huge mass, and certainly should not be
thought of as being potentially observable. It does, however,
correspond directly to the total halo masses one considers in
the PS formalism, because all the mass is assigned to one
object or another.

For groups/clusters, Bahcall (1979) found a=2,
¢$*=1.3%x10"5h%and L*=2.5X 10'2h2L . Here, the total
luminosity density is formally divergent. However, the group
function matches on to the galaxy function, so we may
integrate only down to the galaxy L*. This yields a luminosity
density of 10%2hL, Mpc~3, which is close to the total
obtained from galaxies. The group function accounts for all
the light, just as our f(M) accounts for all the mass, and we
therefore adopt the closure M/L value deduced from the
galaxy luminosity function in order to deduce the group
f(M). There is an inconsistency here in the treatments of
some authors (e.g. Colafrancesco, Lucchin & Matarrese
1989), who apply observed M/L ratios ( ~ 300 ) to convert
between luminosity functions and mass functions. This is not
consistent with Q =1; integration under their mass functions
will produce an incorrect total density. The existence of bias
must mean in practice that clusters, like galaxies, have dark
haloes. The PS formalism deals with the total mass, and so
observed M/L ratios from the centres of clusters are not
relevant.

In practice, the comparison with observation shown in Fig.
6 is reasonably encouraging. The characteristic masses can
be reproduced to within uncertainties imposed by possible
variations in 6., M(R;) and M, and the shape of the mass
functions is not unreasonable given realistic uncertainties in
the data. The slope of the galaxy luminosity function is par-
ticularly interesting. The observed range of low-mass slopes
for the galaxy luminosity function is in the range 0-0.25,
which apparently requires 1.5<n<3 on galaxy scales
according to the basic PS result. With our simple cooling pre-
scription of n—n—4, this becomes well consistent with the
sort of index expected from CDM (—2sns —1).

7 SUMMARY

We have tried to analyse in detail the distribution of masses
expected for collapsed objects in a hierarchical universe. We
believe we have exposed more clearly some of the con-
ceptual problems associated with the Press—Schechter analy-
sis, and shown how to solve correctly the original
Press-Schechter problem. We have also dealt with an
improved version of the analysis, which takes into account
the changes involved in imposing the peak constraint. The
method allows further criteria for formation of structures to
be imposed. We illustrate this by adding the criterion that a
‘luminous’ object must have had time to cool. We thus obtain
a mass function for luminous objects which differs markedly
from that of the dark ‘haloes’.

Our main conclusion is that there is no good justification
for adopting a mass function of the Press—Schechter form,
and in particular that the low-mass slope may well Be differ-
ent. The predicted mass function depends on the form of
filter function one uses, and on the precise peak mass estim-
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ate adopted, both of which can make substantial differences
to the slope of the mass function. A similar problem concern-
ing the effect of filter choice was encountered by Lumsden,
Heavens & Peacock (1989) in their analysis of the clustering
of density peaks. These difficulties illustrate the limitations of
linear theory in tackling problems of this sort.

Nevertheless, we believe that these analytic tools are in
principle very useful, not least in helping us to understand
the results of N-body simulations. Further progress in this
area now requires calibration against non-linear numerical
studies of large dynamic range.
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