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Summary. We have investigated the hypothesis that protogalaxies/protoclusters
form at the sites of maxima in a primordial field of normally distributed density
perturbations. Using a mixture of analytic and numerical techniques, we have
studied the properties of the maxima, with the following results:

(1) Maxima are surprisingly overdense, with a fairly narrow distribution of
overdensities. If the rms variation in 8 (=dg/p) is o, then the mean value of J for
maxima is =20 with a spread ~0.70, unless the perturbation spectrum is rather
flat. This corresponds to a relatively small range of collapse times.

(ii) The shapes of the maxima depend on their heights. For asymptotically high
maxima, all principal axes become equal. The typical maximum, however, is
more nearly prolate with axial ratios 1:0.70:0.55, again quasi-independent of
spectrum.

(iii) The clustering properties of maxima can differ from those of the density
field as a whole. Maxima need not form good tracers of mass.

These results provide a natural mechanism for biased galaxy formation in which
galaxies do not necessarily follow the large-scale density. Methods for obtaining
the true autocorrelation function of the density field and implications for
Microwave Background studies are discussed.

1 Introduction

In the gravitational instability picture for galaxy formation, structure in the Universe arises from
the existence at early times of a spectrum of small density perturbations. A considerable literature
now exists on deducing the present-day consequences of a given form for these initial
irregularities. The most problematical step of this process is making the translation from the
density field to the distribution of galaxies. The assumption that the galaxies trace the mass is
widely employed in e.g. N-body simulations, where the initial distributions of test particles follow
the large-scale density field. In this paper, we consider one reason why this assumption may be
invalid: in situations where there exist density fluctuations on galaxy scales, bound structures will
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eventually form at maxima of the density field. The properties of these maxima (overdensity,
mass, clustering, etc.) are determined simply by the form of the initial irregularities; we
investigate these for a variety of possible spectra. Furthermore, even in cases where there are no
small-scale perturbations (the adiabatic or large-scale damping picture), a study of the properties
of large-scale density maxima (identified as protoclusters or protosuperclusters) is of great
interest. In particular, in addition to properties such as the height of the maxima (peak value of
d0/0, which determines the collapse time) we can determine the shape, i.e. degree of triaxiality of
the peaks. This is an important initial condition which determines the degree of elongation of
present-day superclusters.

The need for such a study has been implicitly recognized for some time (e.g. Peebles 1980, p.
124), but it has not been pursued in Western literature. Our investigation is more similar in spirit
to the work of Doroshkevitch & Shandarin (1978). The subject of density maxima has recently
attracted interest through the idea of biased galaxy formation, where the chance of finding an
object is supposed to be non-linearly enhanced in regions of high density, either through
uncertain physics (e.g. Rees 1985; Davis et al. 1985) or as a result of our observational selection
(Kaiser 1984). Our approach is distinct from these authors: maxima turn out to be already biased
in the sense of having overdensities high by comparison with the ‘typical’ rms level. Nevertheless,
maxima do not show enhanced clustering unless a further threshold is applied. The relation of this
work to biased galaxy formation in general is discussed in Section 4.

The plan of the paper is as follows. Section 2 discusses the distribution of densities and masses
of maxima; Section 3 considers shapes of maxima and the dependence of these on other
properties; Section 4 investigates the clustering of maxima.

2 Scalar properties of maxima
2.1 HEIGHTS OF MAXIMA

We begin with some definitions. The fractional density perturbation & (=Jp/p) is specified as a
Fourier series within some large volume V,,, and the series approximated by an integral:

V.
(27)°

o(x)= fdk(k) exp (—ik-x)d’k,

Ox(k)= Vi fd(x) exp (ik - x)d’x.

The usual assumption is that the phases of the J, are random — a hypothesis of maximum
ignorance. The central limit theorem then requires that J is a random Gaussian process. (This
assumption may eventually be proved false — see Peebles 1983). In this case, the statistics of 6 are
specified by the power spectrum, which is often considered to be a power law |8y [ = k", where
k=|k]|.

The simplest property of a maximum in such a noise field is its height, ... We can calculate
the distribution of heights by extending the one-dimensional calculation of Rice (1954). Consider
the joint probability density function of J and its first two derivatives 6; and Jj;: for Gaussian
noise, this will be a multivariate normal distribution in 10 variables (considering six independent
07 only), which we place in a vector V:

f(V)= exp(—1V-M71.V)

1
@n)° (M2

where M is the covariance matrix M;=(V;V,) (see Appendix). Following Rice, the number
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density of maxima with heights in the range &, d+dd is 7(6)dd, where
10)= | (V10 =0) W] "

where H is the Hessian matrix H;=0}, so |H| is simply the product of the three principal
curvature components. This expression arises by considering the probability of obtaining the
derivatives J; in the ranges dd; in the volume Il;dx;; this is simply Il;dS! times the
six-dimensional integral of f over 8j;. Now, near a maximum, dd;= 67 dx; and we can replace the
o, integration by one over x; by means of the Jacobian |H|. Finally, division by I1; dx; gives the
number density of maxima, 77(0). The evaluation of this integral is complicated by the regime of
integration; for maxima, all three principal curvatures must be negative. Fortunately, it is
straightforward to carry out the six-dimensional integration numerically. In 8" space, the
correlation of 6 and 67 means that f(V |8;=0) peaks at values of principal curvatures proportional
to 8. The spread about the peak remains constant, so in the limit d— o the maxima will become
round (all curvatures equal) and 7(5) will have the asymptotic form

7(8) =83 exp (—6%/20°)

where o is the rms fractional density variation (see Appendix), cf. Doroshkevich & Shandarin
(1978).

Fig. 1 shows the results of this procedure for several power spectra. We consider |8y |*=ak”
with sharp cut-offs at some Ky, and ka4, corresponding to wavelengths A,,,,, and A ,,,;,,. For most
values of n, the results depend only on 4 i, (if Amax> Amin); for n<—3, however, the location of
the upper cut-off becomes important (see below). This is a crude approximation to the situation in
reality, where the power spectrum is damped at small wavelengths according to some transfer
function, which in general has a complicated form. Simple approximations for the transfer
function include exp(—k/kp) for standard adiabatic fluctuations (Doroshkevich & Shandarin
1978) and dexp {—(k/k,)"*} for large-scale damping with massive neutrinos (White, Frenk &
Davis 1983). In practice, it is more convenient to characterize the spectrum by a single
wavenumber. We have chosen to define k. as the wavenumber at which k| Sy | (the power per
unit logk for an isotropic spectrum) is a maximum. In this case, the true spectrum can be

Number Density of Maxima Formation Redshift
10 30 50 7.0

-t T T T T T T T T

n=-3 -2, -1, 1

7(n)
P(8)

Figure 1. (2) The total number density of maxima for power-law spectra |Sy |2 k", A >4 i (density normalized to a
volume13;,), as a function of n. (b) The probability distributions of overdensities of maxima, for varying n. The units
of & are the small-scale rms variation in do/¢, 0. Note that for all but the flattest spectra (n= —3) the peak in f(d) is at
6=20. The upper scale labels collapse redshift on the assumption that the 20 point goes non-linear at z=3.
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modelled by a power law truncated at kp,,x. Where ky.=f(n)k. and f(n) is rather insensitive to
the precise form of the transfer function. This model cannot be exact, as we need to fit two
moments of | 5y | (see Appendix), but in most cases these are both given correctly to within ~10
per cent by f(n)=2.3 (n+3)~%* (except for n<—2). This procedure breaks down for the case of a
Universe dominated by non-baryonic cold dark matter, where the power spectrum is not well
approximated by a single power-law. There is a change in slope of An=4 near scales
corresponding to the horizon at the onset of matter domination, but this happens quite gradually,
and the spectrum is noticeably curved over scales ~101°-10'° M, (Blumenthal et al. 1984). This
power spectrum presents special problems for the approach we are taking here. The case usually
considered is a Zel’dovich spectrum, which breaks to n=—3 at small scales; this spectrum is
sufficiently powerful on large scales that it is less correct to consider small-scale maxima as
isolated distinct entities — small maxima exist within large-scale ones of comparable strength.
Further, there is no damping cut-off at short wavelengths in this model: if we consider a CDM
spectrum truncated at A,;,, this will correspond to observational smoothing of the density field by
some window function. A sensible choice for the window to be relevant to galaxies now would be
Amin~10-100kpc. For the various CDM spectra given by Bond & Efstathiou (1984), this requires
Amax/Amin~10-100 to model the spectrum as a doubly truncated n=-3 power law. As an
illustrative case, we have considered A ay/Amin=25 (or a range of ~10*in mass). We plot in Fig. 1
the total number density of maxima (normalized to 4,,;,=1) and the probability distributions for
the heights separately. There are several important points here:

(i) For n=—1, there are effectively no maxima with §<0. This corresponds to spectra which
are dominated by power on small scales.

(ii) The distributions generally peak at a value of & considerably greater than o, the rms
variation in ¢ for the density field as a wholg.

(iii) The spread in peak values is quite small by comparison to the mean, typically ~0.7 0.

In particular, we may quantify these points by giving a simple analytic approximation for the
height distribution:

2

n(0)x(5+a)’exp ﬁ—gz—

Good fits are obtained with =0, #=0.8 o for n=1, and a =20, #=0.9 o for n=—3. Note that the
peak in the distribution occurs at a somewhat larger value than f.

These results have important implications for the calculation of collapse times for
perturbations. If we take this to occur when linear theory predicts J to reach a value §.~1 (1.68 on
the linear spherical model: Kaiser 1984), then with J§ growing as (1+2z)7!, it makes a large
difference to the collapse time depending on whether we require 20 (a typical maximum) or o (a
typical fluctuation) to grow to .. Furthermore, apart from altering the mean collapse time, the
above picture implies a small range of collapse times. For example, if we take the median J for
n=1 to collapse at z=3, then half the maxima will collapse in the redshift range z=2-4. This
contrasts most strongly with previous work which considered the relevant #(J) to be simply the
positive half of the Gaussian obtained by averaging the primordial density field on some
length-scale of interest (see e.g. Efstathiou, Fall & Hogan 1979; Schaeffer & Silk 1985). In this
latter case, the spread in J is ~the mean value; if we require the median collapse time to
correspond to z=3, then 13 per cent of perturbations would remain uncollapsed at the present
epoch, even for Q=1. In our model with n=1, essentially all maxima will have collapsed by the
present epoch, provided the median collapse redshift is =2.5.

Fig. 1 also shows a scale of formation redshift; this is defined by the epoch at which linear theory
predicts that d reaches some critical value d.. The scale is normalized so the formation redshift for
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Figure 2. The probability distributions of the mass parameter for maxima, for a variety of spectra. (a) The full lines
are the probability distributions for all maxima. The dotted lines are the asymptotic limit as §— . (b) The
probability distributions for masses for maxima of different height, for an approximate ‘cold dark matter’ spectrum
with n=—3. Note that higher peaks generally have greater mass parameters.
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a 20 peak (near the median for most spectra) is 3. It is straightforward to normalize to other 20
formation redshifts Z; by

1+ 2
1+2f=(T) {1+2; (graph)}.

Itisinteresting to note thatif Z;=3 and n=1 a ‘typical fluctuation’ with § = o will not collapse until
z=0.8, and yet 10 per cent of the objects form before z=4.6

2.2 MASSES OF MAXIMA

After collapse, the single most useful parameter of an object will be its mass. It is not completely
straightforward to obtain the final mass of a primordial maximum as this will be modified by infall
of surrounding material during the non-linear stages of collapse. Nevertheless, it is useful to
consider a mass parameter for the maxima which may correlate with the final mass. Near a
maximum in &, we have

O(X)=0m— Y20} dx; dx;

or, diagonalizing the Hessian matrix J};, we obtain the principal axes a, b, c:

i

sco=s. 1 PLE zz}

X)=0n{1-{ —+—=+—]}.
(s

Defining the boundary as 6=0, the volume of the maximum is V=(47/3) abc and the mass is
therefore oV (as 6 is very small initially). In Appendix 1, it is shown that J};«d,, for large &y,.
Thus, the scale factors, a, b, ¢ should be approximately independent of J,. Indeed,
asymptotically, the mass distribution tends to a delta function. At a fixed d,,, it is straightforward
to carry out the analogous integration to Section 2.1 and obtain the mass distribution. This is
shown in Fig. 2, which gives for the same spectra as Fig. 1, both the asymptotic f(M) (6— =) and
the average f(M) (all maxima). The units of mass are o423, where A, is the cut-off wavelength.
Again, for steep spectra, these distributions are similar [confirming the approximate
independence of f(M) and J] and quasi-Gaussian. There is in fact a slight tendency for the high
maxima to be more massive, but only for flat spectra. Note that for the highest maxima of
practical relevance (6,,=40) the mass distributions are still very different from the asymptotic
prediction.

3 Shapes of maxima

We saw in the previous section that very high density maxima (0>0) tended towards spherical
symmetry. Such fluctuations are extremely rare. It is of more interest to ask about the shapes of
more typical (6=20) maxima. It is possible in principle to extend the above techniques to find the
joint probability density function of the three principal axes f(a,b,c) via further numerical
integration. In practice however, it is both more straightforward and a good deal faster in CPU
terms to use a Monte Carlo simulation instead. This has the added advantage of providing a check
on our ‘analytic’ results.

Such a simulation proceeds by filling a three-dimensional grid with a summation of many waves
of specified amplitude and random phase. The only way of obtaining a reasonable number of grid
points is to use a three-dimensional Fast Fourier Transform. In practice, this allowed us to
generate an array of size 100° sampling rather fewer waves in ~1000s on a VAX 11/780. Grid
maxima (those points higher than their 26 nearest neighbours) were located. The grid maxima do
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not, of course, necessarily correspond to the ‘true’ maxima of the density field. In order to
estimate the properties of the true maxima, the 27 grid points were used to estimate J; and &};. If
the density field is well-sampled, these can be used to estimate the position and height J,, of the
true maximum. The Hessian matrix was then diagonalized to find the principal axes of the true
maximum. It was found that sampling of four grid points per minimum wavelength was the limit
for reliable results. One run of the simulation produced a sample of ~10* maxima. We found good
agreement between the distributions of J,, and mass produced by the simulation and the
calculations in the previous section.

The simplest way of displaying the shape information is to plot the various axes directly. Fig. 3
gives plots of short axis against middle axis, normalized to long axis=1. The major point to note is

Shape Distribution

Lol T T T T T T T T

Short Axis/Long Axis
0.5
t
qLvigo0

o . : - | ' ! s 4 .
0 0.2 0.4 0.8 0.8 1
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T T T T T T T T

Short Axis/Long Axis
0.5
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JLVId0

o . 4 . + . - s }
0 0.2 0.4 0.6 0.8 1
Middle Axis/Long Axis

Figure 3. A plot of short axis against middle axis (normalized to long axis=1) for two of the Monte Carlo simulations.
Each maximum is represented by one point on the plot. The top diagram is n=1; the bottom n=—-3. Note the
tendency of points to lie near the prolate line.
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Figure 4. Histograms of axial ratios for the n=1 data shown in Fig. 3. Note the relative equality of short and middie
axes.
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that the predicted roundness of perturbations is reached only slowly. In particular, for maxima
with ,,~30, the mean axial ratios (for n=1) are b/a=0.7 and ¢/a=0.6. Higher maxima are
rounder, but they are very rare — typical maxima are markedly aspherical. They are typically
slightly more prolate than 1:x:x?. Fig. 4 illustrates this point in another way by plotting
histograms of axial ratios. For n=1, the median values are b/a=0.7, ¢/a=0.55. Again, the
dependence on spectrum is not extreme.

The significance of these results depends on the precise scheme of galaxy formation being
considered. We have focused on two cases: power-law spectra with n=1 and n=-3, with sharp
cut-offs at long and short wavelengths. (As noted before, smooth cut-offs or breaks in the
spectrum do not change the results significantly, provided Apreax>Amin-) The natural application
of the n=1 case is to the adiabatic or large-scale damping model of galaxy formation. In this case,
the maxima should be identified as protosuperclusters and minima as protovoids. The shape
information is important because it determines the final degree of flattening of the supercluster —
i.e. whether it has collapsed along one axis to become a ‘pancake’ or along two to become a ‘cigar’
or ‘filament’. These issues are considered by More, Heavens & Peacock (1986, in preparation);
the essential point is that the triaxial nature of the maxima makes eventual collapse along two axes
seem more likely to occur.

The interpretation of the n=-3 case is in the context of the cold dark matter model with
small-scale damping. We are then effectively smoothing the power spectrum on scales
corresponding to a galaxy, and then locating maxima. This is a less clear-cut procedure than in the
large-scale damping model.

In the small-scale damping model, the presence of a considerable amount of large-scale power
then influences the clustering properties of the galaxies, which we address next.

4 Clustering of maxima
4.1 CORRELATION FUNCTIONS

We now wish to ask how the spatial distribution of maxima is related to the overall density field.
In particular, what information about the large-scale non-uniformity of the Universe can be
extracted from the clumping of tracer particles viewed as density maxima? There are two relevant
measures of the clustering; these are the autocorrelation function W(r) of the fractional density
perturbation field &(r)

W(r)=(5(x)o(x+r))

and the two-point correlation function &(r) of the set of tracer particles considered. This is
defined as the excess probability of finding a particle a distance r from another, relative to the
probability for an unclustered distribution dP,
dP={1+&(r)} dP,.
If we consider a set of particles scattered with a density proportional to matter density, then
&E(r)=W(r), except on very small scales (Peebles 1980, p. 147). Thus, subject to the common
assumption that galaxies trace the mass distribution, we could deduce the autocorrelation
function of 8(r) from &(r) for galaxies. However, this assumption may not hold in the case we are
considering. In linear theory with Q=1, 6 increases with time, so that W(r) = (1+z)~? (if r is in
comoving units). However, the positions of the maxima are independent of this growth and thus
&(r) for them does not change with time. We can illustrate this difference by evaluating directly
the two-point correlation function for maxima in our simulations and comparing this with the
analytic W(r).

Vu

(@2x)’

W(r)= fﬂéklzexp (ik-r) d>k.

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1985MNRAS.217..805P&db_key=AST

J. A. Peacock and A. F. Heavens

814

“4 981e] 18 INOTARYQ Y] 2SNl 01 (] JO 10308] B Aq parjdy[nui suonouny UOHB[21100 SY) MOYS SIUI] PANIOP JU], ‘B1302ds SNoLIeA 10] (4)F
BUIIXEW JOJ SUOIOUN] UONEB[31109 Jutod-z oy) yiim [ =(0)44 01 pazijewsou] (4) 4 UOHOUN] UOTIB[2LI0d0INE SSBL Y1 JO UosLIedwo) *g danry

L T

o1

00’0 B40QB LPSE

B DU S S

£0°0 8a0qe 2669

(13

(032

EE,A\.H

T

—+ -

| U S S S

g—=u uoijouny 80URLIRAO)

E.EA\h

o1

o —r—r——

Y

T ad -t

) IR S 1

1=u uorouny

soueRIIRAO)

G0
(o)m/ (DM

(o)n/ (DM

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1985MNRAS.217..805P&db_key=AST

P e e e e e ==

Maxima in primordial density perturbations 815

Fig. 5 makes this comparison for a range of spectra; note that for convenience W(r) is
normalized to W(0)=1. It is probably not meaningful to consider W(0)=<1 as then the maxima will
not have undergone collapse and will not be identifiable as distinct objects. For W(0)>1,
conversely, the above argument does not apply. This is because, going beyond linear theory, the
positions of small-scale maxima are affected by the large-scale density perturbations. In the
Zel’dovich approximation (e.g. Efstathiou & Silk 1983, section 5.2), fluid displacements due to
short- and long-wavelength disturbances grow independently and small-scale maxima will thus be
approximately convected with any large-scale flow. This means that our correlation functions for
maxima are not strictly accurate on scales >4,,;,, but for W(0)~1 the clustering on these scales is
in any case small. For n=-3 these effect of convection are negligible. Once the local peaks have
collapsed, the resulting bound objects should continue to act as Lagrangian markers and trace the
large-scale flow.

A further complication is presented by the mass which is not initially incorporated into one of
the first generation of bound objects. If the efficiency with which this material is incorporated into
a neighbouring proto-object is a function of position, then the galaxies will not trace the mass in
that the large-scale luminosity density need not follow the mass distribution. To give an idea of
the scale of the problem, we can see how much of the mass of the Universe is accounted for by the
mass estimates in Section 2.2. This generally accounts for only about 25 per cent of the total. Now,
if infall was completely effective in assigning mass to one or other bound objects there would be
an interesting consequence: given a constant M/ L ratio, the maxima would again trace the mass
in that the large-scale luminosity density would vary with the density field. However, in general
the efficiency of infall might well be expected to vary. In regions of large-scale overdensity, there
is both a higher density of background matter and a greater number density of potential accreting
objects. This could lead not to a further increase in the number density, but to an increase in the
luminosity of objects in these areas. In this case £(r) from a magnitude-limited sample would not
yield a correct estimate of the large-scale density contrast because it implicitly assumes that the
luminosity function is constant in form throughout space. It is not straightforward to say for
certain whether this must happen. However, it should be interesting to investigate any differences
between normal and luminosity-weighted correlation functions for existing redshift surveys.

It is interesting to compare these results with those of Kaiser (1984). He computed the
cross-correlation function of regions lying at thresholds 6 >vo in Gaussian noise. For linear
clustering in the limit v>1, Kaiser found

2
W>V(r)_(0_2) W(r)

This amplification occurs essentially because high fluctuations are more likely to occur in regions
of greater large-scale density. Kaiser estimated the amplification for Abell clusters, assuming that
W(r) could be replaced by &(r) for clusters and galaxies respectively, and showed that a threshold
v=2-2.5 could account for the observed discrepancy between the galaxy—galaxy and
cluster—cluster correlation functions. This process is related to a general idea now receiving much
attention, called biased galaxy formation (see e.g. Rees 1984, 1985). The essential idea is that the
efficiency of galaxy formation could be some non-linear function of density, leading to galaxies
being found preferentially in regions of high threshold in . The major motivation for this idea is
to allow galaxies to be more strongly clumped than the overall matter distribution, so that a
density parameter of Q=1 would be allowed despite the smaller values apparently implied by the
low peculiar velocities of galaxies (e.g. Efstathiou & Silk 1983). In this context, it is worth noting
that the statistics of maxima provide a natural mechanism for biasing in that very few <lo peaks
are found (Section 2.1); this is achieved without appealing to any non-linearity. However, this
does not immediately yield Kaiser’s result on clustering strengths. This is because he considers the
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cross-correlation function of regions of high threshold; such regions are found preferentially in
areas of large-scale enhanced density and thus have a larger coherence length. However, this does
not imply that there are vastly fewer maxima in large-scale voids — only that they are on average
lower and will thus collapse later. Since Section 2.1 showed that there is a narrow range of
collapse times for maxima, there is only a small range of time in which we will find significantly
fewer bound structures in voids. Thus, we would not expect enhanced clustering of maxima as
specified only by their two-point correlation function unless luminosity-biasing effects as
discussed in Section 4.1 were important [see also Rees (1984, 1985) for mechanisms whereby the
first maxima to collapse could prevent others forming galaxies]. The Kaiser effect operates to
some extent if we now impose a threshold on maxima - i.e. considering abnormally high peaks
only. However, it does this in a way which depends on the degree of large-scale power in the
spectrum (not surprisingly). This is illustrated in Fig. 6: for flat spectra (n=—3) there is a large
amplification, with £(r) for >30 peaks increased by about an order of magnitude; conversely for
n=1 there is no change in & with threshold, as there is little large-scale power. In any case, any
amplication is with respect to £(r) for maxima as a whole, which is not necessarily related to the
large-scale W(r) (see above). Kaiser associates 30 peaks with Abell clusters, and compares their
correlation function with that of galaxies instead of that of the matter. The only circumstances in
which Kaiser’s assumption of equating W(r) with &(r) for galaxies might seem to be valid is if we
consider large-scale damping with infall going to completion: in this case the numbers of galaxies
forming in clusters and superclusters could scale with overall mass. However, since clusters would
then no longer correspond to peaks in the primordial density field, Kaiser’s analysis of £(r) for the
cluster does not apply, as he points out.

From the point of view of estimating W(r) it is interesting to note that the main effect of
thresholding appears to be on the amplitude of &£(r): the positions of zeros in &(r) are
approximately preserved. Moreover, comparison of Figs 5(b) and 6(b) indicates that, on scales
greater than the inter-maximum separation, W(r) and &£(r) for maxima above a threshold vo agree
approximately to within a multiplicative factor (this overestimates & slightly):

W(r)
w(0)’

E(r)=v*

as found by Kaiser (1984) and Politzer & Wise (1984) for a different but related problem. This
means that, if we have a set of objects which we know to have been selected above some threshold
vo, then &(r) for these objects may give us an estimate of the form of W(r). The relative scaling
can only be determined from the threshold v and the epoch of formation, however. Forn=-3, we
know that, when a typical (1.50) maximum collapses (0 =1 in linear theory) then W(0)=(1.5) "2 at
the redshift z; when this occurs. If the large-scale correlation function is not a result of the
formation of anisotropic structures (Heavens 1985), then on scales where the density contrast is
still small, the correlation function of the maxima above vo should be related to the
autocorrelation function of the matter by

Eovo(r,2=0)=(1.5*v*W(r, z=1z;).

The question is to which objects this relation should be applied. Galaxies appear to be a poor
choice for two reasons. First, we need to consider scales where the large-scale structure is still
linear, and £(r) for galaxies become small and uncertain. Secondly, we do not know if galaxies are
in fact selected above any fixed threshold. Conversely, if we consider Abell clusters, the signature
of clustering is strong out to ~100 Mpc. Moreover, there is a prospect of determining the correct
threshold, because this is set by our observational selection, rather than by any of the poorly
understood mechanisms for biased galaxy formation. If Abell clusters are viewed as maxima in
O(r) when smoothed through a window of size Ry, then a knowledge of the number density of
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clusters determines the threshold v. Kaiser (1984) shows that Ry, in the range (20-10) A3y Mpc
yields v=2-3. Thus, there seems some prospect of regarding the clustering of Abell clusters not as
biased by comparison with the ‘true’ &£(r) for galaxies, but as the best available diagnostic (when
corrected as above) of the large-scale inhomogeneity of mass in the Universe.

4.2 IMPLICATIONS FOR MICROWAVE BACKGROUND ANISOTROPIES

Any possible difference between &£(r) and W(r) is especially important in calculations of the
expected anisotropies in the Microwave Background. These depend on inferring the present-day
J(r) from the galaxy distribution and then extrapolating back to the time of recombination. This
can be done in essentially two ways. Wilson & Silk (1981) and Vittorio & Silk (1984) normalize by
requiring W(r) for the matter distribution now to equal &(r) for galaxies, at the point where
E(r)=1 {10 (Hy/50) ' Mpc, where H, is in km s~! Mpc™'}. This procedure is also followed by
Bond & Efstathiou (1984) for the case of small-scale damping. For large-scale damping (e.g. a
Universe dominated by massive neutrinos), however, they instead normalize to a pancake
collapse epoch when W(0)=1, requiring that this happen at a redshift >3.

In the latter case, the effect of our results is easy to see; applying Bond & Efstathiou’s criterion
for collapse, the correct collapse epoch is when & for a typical maximum reaches 1, i.e. 2.20=1
rather than o=1. Thus, the predicted AT/T values of Bond & Efstathiou are reduced by a
straightforward factor of 2.2. Their =1 massive neutrino prediction already lies a factor ~2
below the best observational upper limit (Uson & Wilkinson 1984), so it would seem possible to
reduce 2 significantly without running into difficulties with the background anisotropy.

The impact on the cases of purely baryonic or cold non-baryonic dark matter is less easy to
quantify. On the one hand we have shown that a modest degree of biasing is natural (a factor of
2.2forn=1, 1.5 for the effective n=—3 cold dark matter case), which would again tend to reduce
AT/T. On the other, we have demonstrated that £(r) for galaxies in such a case does not describe
the large-scale density field correctly. Perhaps the safest procedure would be a normalization
analogous to the one for large-scale damping — i.e. requiring the typical maxima to reach =1 at
some redshift which is observationally reasonable for galaxy formation, z=2 say. At present, it is
not clear whether the assumption that W(r)=1 at r=10 h5; Mpc today need be correct, and we
believe that constraints on Q etc. from such calculations should be treated with caution.

5 Conclusions

We have calculated the simplest consequences of assuming that galaxies form from Gaussian
primordial density fluctuations, given that individual bound objects will form at the sites of
density maxima. Our principal conclusions are as follows:

(i) Maxima generally have a fairly small dispersion in values of 59/¢0. One can define an ‘epoch
of galaxy formation’ Z; from the median value of dg/p, but there is a spread (typically Az~1 if
2¢~3) in formation redshifts.

(it) The values of do/p at a maximum are generally =20 (where o'is the rms variation in do/p),
somewhat dependent on the spectrum. This provides a natural mechanism for a modest degree of
‘biasing’, without appealing to non-linearities in the efficiency of galaxy formation as a function of
density.

(iii) Typical maxima are triaxial, with a tendency to be slightly more prolate than 1:x:x2. The
asymptotic tendency of high maxima to become spherical does not become important until >4¢
fluctuations are considered. For maxima of supercluster scale, subsequent evolution (More et al.

1986, in preparation) suggests that this may be related to the observed tendency towards
filamentary structure in the Universe.
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(iv) The two-point correlation function for maxima is generally not the same as the
autocorrelation function of the matter distribution on any scale — maxima do not trace mass. This
point is enhanced if the ~75 per cent of mass not initially contained in a collapsing proto-object
does not subsequently undergo infall.

(v) The above points imply that the expected fluctuations in the Microwave Background have
sometimes been overestimated; Universes with low values of Q may still be allowed.
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Appendix: Evaluation of p(0)

We first need to consider the covariance matrix M;=(V;V;) where V=(J, J;, 811, 0%, 033, 012,
13, 053). The non-zero components of this may be written as follows:

My=0% (referred to as simply o? in the text)
My=My=My=01/3

Mss=Mgs=M7,=03/5

Mys=Mg=M;=~01/3

Mgg= Moo= Mg 10=Ms, etc.=03/15

where

47V,
(27)*

m

f ldk‘2k2m+2dk.
0

The multivariate Gaussian distribution f(V) contains the quadratic form V-M~!- V. To calculate
this, we must invert the 10X 10 matrix M, which is a reasonably straightforward exercise. In order
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to investigate the asymptotic limits §>1 we re-order the quadratic form, which contains terms
proportional to 82, x;d, and x,x;, where X is a six-component vector containing the six independent
second derivatives (i.e. Vs—V1y). We write

V-M ' V=0+E-u) N-(x—u)

where O« 62 and the ‘means’ ;8. Q turns out to be simply 62/a3, and y; either —(0/306)d (for

11, O, 0%) or zero (S, etc.). The matrix N is simply the part of M~! which mixes second
derivatives in the original quadratic form. The meaning of this new quadratic form becomes clear
if we fix & and set all the x;=p; except one, x;. As we vary x;, the distribution peaks at a value y;,
and is normally distributed with a standard deviation given by components of N. As J increases,
the means of 8, 84,, 8% become more negative, in proportion to d, but the spread of values
about the mean remains constant; it is fixed by N, which is independent of 6. So, for
asymptotically high maxima (6> 0y), it is a good approximation to set 8, =8%=0%=—(03/30%)5
(i.e. principal axes become equal), and the integration to find 77(8) can be done analytically. The
result is

o2 \3/2
n(d)= (—]—-) &3 exp (—6%/20%) 0> 0.

(27)? \343

This is similar to the expression quoted by Doroshkevich & Shandarin (1978), except that their
constant of proportionality is independent of spectrum. The above authors give no derivation of
their result, but we believe it to be incorrect as the above form agrees both with numerical
integration and simulation.
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