Testing the Accuracy of Weak Lensing Analysis

The Case for BJ02 (Gauss-Laguerre) Method

Reiko Nakajima, Gary Bernstein University of Pennsylvania July 25, 2005

Difference with STEP

Shear Testing Program
 Shear Accuracy Test

Image simulation
⇔ Postage stamp image

Crowding \Leftrightarrow None

PSF determination ⇔ Known PSF

Measure shapes \iff Yes

Averaging Shapes

$$\langle e_1 \rangle = 0$$

$$\langle e_2 \rangle = 0$$

"Ring Test"

Averaging Shapes

$$\langle \mathbf{e}_{1} \rangle = \delta_{1} \left[1 - \frac{\mathbf{e}^{2}}{2} \right]$$
$$\langle \mathbf{e}_{2} \rangle = 0$$

"Ring Test"

Why is the Ring Test important?

- Quantifies PSF residuals in shear signal
- Quantifies recovery of shear signal δ
- Verifies optimal weight (w) and responsivity (R)

$$\hat{\delta} = \sum w_i e_i / \sum w_i$$

$$\mathcal{R} \equiv \partial \hat{\delta}_1 / \partial \delta_1 = \partial \hat{\delta}_2 / \partial \delta_2$$

 $\hat{\delta}$: shear estimator

e_i: ith galaxy ellipticity

Why is the Ring Test important?

- Quantifies PSF residuals in shear signal
- Quantifies recovery of shear signal δ
- Verifies optimal weight (w) and responsivity (R)

$$\hat{\boldsymbol{\delta}} = \boldsymbol{\Sigma} \mathbf{w}_{i} \mathbf{e}_{i} / \boldsymbol{\Sigma} \mathbf{w}_{i}$$

$$\boldsymbol{\mathcal{R}} \equiv \partial \hat{\boldsymbol{\delta}}_{1} / \partial \boldsymbol{\delta}_{1} = \partial \hat{\boldsymbol{\delta}}_{2} / \partial \boldsymbol{\delta}_{2}$$

$$\langle e_1 \rangle = \delta_1 \left[1 - \frac{e^2}{2} \right]$$

 $\hat{\delta}$: shear estimator e_i : *i*th galaxy ellipticity

Convergence

99% convergence contour

Shape determined 100%

Object either too small or too dim for reliable shape measurement

Simple shape measurement (Elliptical Gauss-Laguerre) No PSF

Shape Accuracy

99% convergence contour

Asymmetric Objects

Definite Shape

Shape is definition dependent

Ring Test with Asymmetric Objects

$$\langle \mathbf{e}_{1} \rangle = \delta_{1} \left[1 - \frac{\mathbf{e}^{2}}{2} \right]$$

No PSF

Ring Test with Asymmetric Objects

$$\langle \mathbf{e}_1 \rangle = \delta_1 \left[1 - \frac{\mathbf{e}^2}{2} \right]$$

Convergence: with Deconvolution

99% convergence contour

Exponential object convolved with Airy PSF

Shape determined 100%

Object either too small or too dim for reliable shape measurement

Object size relative to PSF size

Shape Accuracy: with Deconvolution

Shape Accuracy: with Deconvolution

10% PSF anisotropy

Shape Accuracy: with Deconvolution

10% PSF anisotropy

difference

Ring Test: with Deconvolution

- PSF suppression:
 - 1~2% residual of PSF shape

Asymmetric object, poorly resolved Asymmetric PSF

Ring Test: with Deconvolution

- Shear signal recovery:
 - accurate to 1~3%

Conclusion

- Simple shape determination (Elliptical Gauss-Laguerre fit)
 - good to $\ll 1\%$
- PSF suppression (deconvolution fit):
 - PSF suppression of ~ 1%
- Shear recovery (ring test, with deconvolution):
 - good to 1~3%, after removal of additive PSF effects
 - degrades as detection significance becomes low
 - object symmetry matters