

The magnitude dependent calibration bias in the TS $$\rm KSB+$ analysis of STEP1-3

Tim Schrabback¹

¹AlfA Bonn

STEP Workshop, JPL, August 21st, 2007

Tim Schrabback: The magnitude dependent calibration bias in the TS KSB+ analysis

KSB summary	STEP1	STEP2	STEP3	Conclusions

Outline

KSB summary Conclusions from STEP1 The magnitude dependence in STEP2 STEP3 versus STEP2 Conclusions

KSB summary	STEP1	STEP2	STEP3	Conclusions

KSB+ on one slide

Ellipticity from weighted 2nd-order brightness moments

$$e = e_1 + ie_2 = rac{Q_{11} - Q_{22} + 2iQ_{12}}{Q_{11} + Q_{22}}$$
 .
 $Q_{ij} = \int d^2 heta W_{r_g}(heta^2) heta_i heta_j I(m{ heta}), \quad i, j \in \{1, 2\}$,

with coordinates such that $\int {\rm d}^2\theta\; W_{r_g}(\theta^2) \boldsymbol{\theta} I(\boldsymbol{\theta}) = 0$.

PSF correction with shear and smear polarisability tensors

$$e - e^{s} = P_{g}g + P_{sm}q^{*}$$
,
 $P_{g} = P_{sh} - (P_{sm}^{*})^{-1}P_{sh}^{*}P_{sm}$,
from stars: P_{sh}^{*} , P_{sm}^{*} , $q^{*} = (P_{sm}^{*})^{-1}e^{*}$.
Kaiser, Squires, & Broadhurst (1995), Luppino & Kaiser (1997), Hoekstra et al. (1998)

KSB summary	STEP1	STEP2	STEP3	Conclusions

Limitations

- KSB assumes that the PSF can be described as a convolution of an isotropic (nearly Gaussian) part with a "small" anisotropy kernel
- III defined for realistic PSF types (Kaiser 2000)
- Pixelization is not taken into account
- \blacktriangleright Non-linear operations on noisy quantities (inversion of $P_g)$

KSB summary	STEP1	STEP2	STEP3	Conclusions

A zoo of KSB+ implementations

Possible differences between KSB+ implementations

- Object detection (SExtractor, hfindpeaks)
- Choice of scale r_g (SExtractor, hfindpeaks), r_g = X · FLUX_RADIUS
- Transformation of KSB integrals into sums over pixels (interpolation)
- Inversion of P_g , $(P_{\rm sm}^*)^{-1}P_{\rm sh}^*$
- \blacktriangleright Fitting of q^* , $P^*_{\rm sh},\,P^*_{\rm sm}$ as a function of position, r_g
- Fitting of P_g as a function of mag, r_h , |e|, ...
- Applied cuts / weighting

Our implementation of KSB+

- Object detection with SExtractor (Bertin & Arnouts 1996)
- Shape measurements with the Erben et al. (2001) KSB+ implementation + modifications
 - Linear interpolation across sub-pixel
 - $r_g = 1.0 \times \text{FLUX_RADIUS}$
 - Measure all stellar quantities as function of r_g (Hoekstra et al. 1998; Heymans et al. 2005)
 - Use trace for $(P_g)^{-1}$, $(P_{\rm sm}^*)^{-1}P_{\rm sh}^*$, no P_g -fitting

KSB summary	STEP1	STEP2	STEP3	Conclusions
Conclusion ► Selection r _h > 1.2 ► Applied adequat ► Both co	s from STEP1 on bias due to cut $r_{\rm h}^*$, $ \gamma < 0.8$ weighting schem e for constant she rrected $\Rightarrow -9\%$ b	s: ne not ar ias	Heymans et al. 2	
Probably	y due to approxii	nation	<m></m>	

of P_g^{-1} as $2/\text{tr}P_g$: Full tensor: m = +1.4% for $|\gamma| < 1.4$, m = +5.6% for $|\gamma| < 2.0$, very noisy. Instead: 1/0.91 shear calibration factor

 Value quite stable between PSFs, but depends on interpolation, rg-factor X

Tim Schrabback: The magnitude dependent calibration bias in the TS KSB+ analysis

KSD summary STEPI STEP2 STEP3 Conclusi	ons

Dependence weak on magnitude, strong on X

KSB summary	STEP1	STEP2	STEP3	Conclusions

Original performance on STEP2

- Confirmed calibration factor except PSF D,E
- 20 30% under-estimation at faint end
- Same selection as for "corrected" STEP1, but neglected noise correlation

KSB summary	STEP1	STEP2	STEP3	Conclusions

The STEP2 noise correlation

For uncorrelated noise:

$$\sigma_N = \sqrt{N}\sigma_1$$

Correlation leads to an underestimation of σ_1 , but σ_N remains unaffected for areas much larger than the drizzle kernel.

$$r = rac{\sigma_N^{
m measure}}{\sqrt{N}\sigma_1^{
m measure}} \sim 2.8 ~{
m for}~~N
ightarrow \infty$$

$$\Rightarrow$$
 S/N is over-estimated from σ_1 by a factor 2.8!

$$\mathrm{S/N} = \frac{\int \mathrm{d}^2\theta \, W_{r_{\mathrm{g}}}(|\boldsymbol{\theta}|) \, I(\boldsymbol{\theta})}{\sigma_1 \sqrt{\int \mathrm{d}^2\theta \, W_{r_{\mathrm{g}}}^2(|\boldsymbol{\theta}|)}}$$

KSB summary	STEP1	STEP2	STEP3	Conclusions

The STEP2 noise correlation

- Cut in original analysis S/N > 4 corresponds to S/N^{true} > 1.4
- \blacktriangleright Deterioration occurs for $\rm S/N < 7$ or $\rm S/N^{true} < 2.5$
- Consistent with STEP1: No strong bias down to S/N^{true} = 3.0

KSB summary	STEP1	STEP2	STEP3	Conclusions

A proper signal-to-noise cut excludes the strongly biased faint galaxies

- $\blacktriangleright~{\rm S/N}>7~{\rm or}~{\rm S/N^{true}}>2.5$
- Rejects ~ 30% of the galaxies, but still lower true S/N cut than in STEP1!
- Adapted calibration: 1/0.93
- Remaining bias variation:
 ~+4% to -5%
- ► Fitting of TrP^g/2 (r_h, mag) or TrP^g/2 (r_h, |e|) does not improve remaining variation considerably

KSB summary	STEP1	STEP2	STEP3	Conclusions

Fitting $\mathrm{Tr}\mathsf{P}^{g}/2(\mathsf{r}_{\mathrm{h}},\mathrm{mag})$ and $\mathrm{Tr}\mathsf{P}^{g}/2(\mathsf{r}_{\mathrm{h}},|\mathsf{e}|)$

STEP3: ACS-type images

STEP3: SNAP-type images

Tim Schrabback: The magnitude dependent calibration bias in the TS KSB+ analysis

Comparing STEP2 and STEP3

STEP3 ACS-type

KSB summary	STEP1	STEP2	STEP3	Conclusions

Comparing STEP2 and STEP3

- Calibration 1/0.93 OK for STEP2 and STEP3
- STEP3 more stable, both calibration (scatter 2% between ACS+SNAP image sets) and PSF anisotropy residuals, but e* = 11% versus e* = 2.5%
- Overlap small 23 $\lesssim m \lesssim$ 24.5 , 0".35 $\lesssim s \lesssim$ 0".5
- Is this sufficient to show: We can do better from space?

In contrast to STEP1 no strong dependence on half-light radius in STEP2 or STEP3

Peculiarity of the SKYMAKER simulations?

KSB summary	STEP1	STEP2	STEP3	Conclusions
Conclusions				

- With careful selection our KSB+ implementation yields an average bias $\sim -7\%$ (STEP2-3) to $\sim -9\%$ (STEP1).
- ► The bias is quite stable justifying the use of a calibration factor.
- The bias seems to increase for highly elliptical PSFs.
- Probably the trace-inversion of P_g is a major reason for the bias.
- ► Additionally, X and the use of the interpolation modify the bias.
- ► The strong bias seen for the faint galaxies in STEP2 originates from improper S/N cuts as a result of the noise correlations.
- If corrected, the bias ranges from $\sim +4\%$ to -5%.
- The performance on the STEP3 simulations is more stable with 2% scatter between the image sets and weak magnitude/size dependence, but PSF ellipticities are smaller.
- ▶ The overlap in mag-size-space is small between STEP2 and STEP3