Space STEP 3

Shapelet Simulations: Will High, Richard Massey and Jason Rhodes

Analysis: Joel Berge (Shapelets) Catherine Heymans (KSB+) Rachel Mandelbaum (REGLENS) Reiko Nakajima (BJ02/NB07) Stephane Paulin-Henriksson (KSB+) Jason Rhodes (RRG) Tim Schrabback (KSB+)

Example image with e2 shear:

 Complex morphology from the shapelets model(Massey et al 2004)

Space-based resolution

arcmin

Caveats

- The galaxy model comes from a shapelet analysis of psfconvolved galaxies in the COSMOS data.
- As galaxies become fainter and smaller, their intrinsic ellipticities become rounder (ACS PSF or shapelet truncation?).
- This effected the RN and RM STEP2 analyses where the ellipticity distribution was initially considered to be constant as a function of magnitude and size.
- It is likely to have even more impact on STEP3.

PSF Caveat

 PSF was assumed to be constant across the FOV. Resolved the issue of PSF modelling for large pixel scales.

A first pixelization at the focal plane is unavoidable

ACS example from Rhodes et al 2007

Space STEP Simulations

PSF ID	Pixel scale (arcsec)	PSF type	galaxy type
Α	0.05	SNAP	Shapelet
В	0.10	SNAP	Shapelet
С	0.10	1.4m SNAP	Shapelet
D	0.04	ACS	Shapelet
E	0.10	ACS	Shapelet
F	0.04	ACS	Exponential
G	0.10	ACS	Exponential
Н	0.04	ACS	Shapelet
I	0.04	ACS	Shapelet
J	0.04	ACS	Shapelet
К	0.04	ACS	Shapelet
L	0.04	ACS	Shapelet

m₁

 m_{1}

m₂

m₁

m₁

Trends?

Some methods are better for;

Blank = no trend

Method	Pix scale m	Pix scale c	ACS/SNAP m	ACS/SNAP c	Exp/ shapelet m	Exp/ shapelet c
TS						
T2						
RM	large		SNAP			
RN	small			SNAP		
JR					Shapelet	
JB	large				Shapelet	
СН				ACS	The states of	
SP						

Methods that have been applied to space-based data fair well

	Lenser	ngals	m	с	m2	c2
0.04	TS	71 ± 3	-0.01 ± 0.01	0.001 ± 0.000	0.01 ± 0.01	0.001 ± 0.000
0.10	TS	57 ± 13	0.01 ± 0.01	0.001 ± 0.001	0.02 ± 0.01	0.001 ± 0.000
	Τ2	71 ± 3	-0.07 ± 0.01	0.001± 0.001	-0.06 ± 0.01	0.001 ± 0.001
Surger 1	T2	57 ± 13	-0.06 ± 0.00	0.001 ± 0.000	-0.05 ± 0.01	0.001 ± 0.000
	RM	159 ± 3	-0.10 ± 0.01	-0.007 ± 0.001	-0.10 ± 0.01	0.002 ± 0.001
	RM	112 ± 25	-0.04 ± 0.00	0.018 ± 0.009	-0.02 ± 0.02	0.003 ± 0.002
	RN	74 ± 7	-0.06 ± 0.01	0.001 ± 0.001	-0.03 ± 0.01	0.001 ± 0.001
	RN	106 ± 25	-0.09 ± 0.01	0.001 ± 0.000	-0.09 ± 0.01	0.000 ± 0.000
-	JR	67 ± 0	0.03 ± 0.02	0.003 ± 0.000	-0.02 ± 0.02	-0.002 ± 0.001
	JR	46 ± 9	0.07 ± 0.02	0.003 ± 0.001	0.00 ± 0.01	0.000 ± 0.000
	JB	175 ± 7	-0.22 ± 0.01	-0.001 ± 0.001	-0.23 ± 0.01	-0.001 ± 0.001
-	JB	132 ± 28	-0.11 ± 0.03	0.000 ± 0.000	-0.10 ± 0.04	-0.001 ± 0.001
	CH	105 ± 4	-0.05 ± 0.01	0.001 ± 0.000	-0.06 ± 0.01	0.000 ± 0.000
	CH	101 ± 24	-0.02 ± 0.01	0.000 ± 0.000	-0.03 ± 0.01	0.000 ± 0.000
	SP	64 ± 2	-0.19 ± 0.01	0.001 ± 0.000	-0.17 ± 0.01	-0.002 ± 0.001
	SP	46 ± 7	-0.10 ± 0.01	0.000 ± 0.001	-0.11 ± 0.01	0.000 ± 0.000

On average methods are more accurate with the larger pixel scale, except for the JR and RN analysis

Summary

- Methods that have been applied to space-based data fair well (within 5% accuracy).
- Most methods perform the best on the larger pixel scale data.
- STEP3 is the space-based analogue to STEP1.

What next?

- Without rotated images we can't easily investigate mag/ size dependence (although see Tims talk next), or PSF/ galaxy type dependence.
- The dependence on pixel size is interesting and should be investigated further, (also see Wills talk tomorrow).
- In understanding the reliability of our results we have to consider all the caveats.
- The results are "politically-sticky".