Comprehensive Forecasts
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Motivation & Problems

® When you're asking for several $100M, you'd better understand how
well your measurement will work! (including checking your calculations)

® Many idealizations in most forecasts, which may lead to substantial
overestimates of capabilities:

There are { no intrinsic alignments | only Il | intrinsic alignments have
simple functional form}

The Universe is described by GR with an isotropic DE with wO/wa
eqn of state.

Galaxy densities are linearly biased w.r.t. mass with pure Poisson
noise (e.g. fully correlated)

Photo-z errors {don’t exist | are just biases | have Gaussian
distributions}.

All of the galaxies (or all in a bin) have the same shear calibration
errors, same intrinsic correlations, same bias & correlation
coefficients w.r.t. mass and to each other.
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Challenges

® The “dark energy,” modifications to GR, and many systematic
effects are free functions of redshift, scale, galaxy type, etc.
Assuming that they have particular functional forms can make
them artificially easy to distinguish.

® Problems that are easily solved in isolation may be difficult to
solve in combination. Example:

® “Well known” that power-spectrum tomography only
requires photo-z’s accurate enough to generate 3 or so
bins (e.g. Hu).

® “Well known” that intrinsic alignments (at least Il) are
easily removed with use of photo-z’s

® But Bridle & King note that tomography with simultaneous
intrinsic-alighment rejection places much stronger
demands on photo-z.

Desire a WL forecast that includes all important systematics. Also

treat dark energy, gravity alterations, and systematics as generally
or non-parametrically as possible.
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Benefits

® Most forecasts make use only of power-spectrum tomography, to
some predetermined maximal I. Much more info is available from
WVL survey:

High-l lensing carries information, even though must
marginalize over theoretical power-spectrum uncertainties.

Galaxy-galaxy, galaxy-shear, and shear-shear 2-pt info can work
very well together (Hu & Jain, Zhan)

3-point shear info (even ignoring SGG, SSG, GGG signals, plus
l1l, Gll, GGI contaminants....) (Takada & Jain)

Peak statistics (clusters) (Hennawi & Spergel, Marion &
Bernstein,VWang et al, ...)

® Using multiple statistics can isolate systematics and reduce their
detriment. Example: galaxy-shear correlations reduce impact of
intrinsic correlations!?
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Generalized WL Analysis

® The Universe has FRW
metric with some
curvature and mass
densities Wg, Wy,
® (Galaxies are assumed to
line on a series of shells
at nominal redshifts 2, or a;
® FEach shell has
® Ang-diam distance /),
® Comoving thickness /\ -,
® A mass distribution 177,/
® which is produced
from some power

spectrum: P, (1/D;, z;)

We may have some cosmological model that specifies
distances, power, etc, but for now leave them all as free

parameters and see what combinations are constrained
by observations.
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Generalized WL Analysis (2)

® |f light travels on geodesics of perturbed RW metric:
e (A R =T BT e

® and the matter field sources all the potential fluctuations

® and GR is correct about Poisson equation with gb — —¢

° then grawtatlonal Iensmg mduces 4 convergence (and matchlng E-mode
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Robustness of lensing cosmology

Aij = (1= Di/Dj) (1 —wrDiDj/2)
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Generalized WL Analysis: Observables

® Ve use photo-z or other information to divide the observed galaxies
(or 21-cm data, other observables) into sets. For each set we observe

® A density field g,im

® and/or a lensing field Ky
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Likelihood for density/shear

int

® On each redshift shell i there are variables 1M, Gois Ko

® Assume Gaussian and Limber, i.e.:
® There is no correlation between distinct redshift shells or
spherical harmonics
® \Within a shell, the above variable have multivariate
Gaussian distribution.
® Then the likelihood is fully described by the covariances
which are power spectra:

<mz2> = Pim

(gesias Pl (I Bt
(ore = (e ( giin)ds
<migi0é> = PzTZg e bguz gzpzm
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® Note appearance of II'and Gl terms in analogy to bias and
correlation coefficients of galaxy clustering.

® Since the observables are linear functions of these variables,
they also have a multivariate, zero-mean Gaussian likelihood.
Usual Fisher matrix and data-fitting techniques will apply.
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Parameter Hell

® A beautiful non-parametric likelihood expression for the likelihood of 2-point
survey statistics. But aside from the desirable cosmological parameters
(curvature, distances) we have a vast number of nuisance parameters:

Probability p for every subset of galaxies (i.e. photo-z error distributions)

bias and correlation coefficient of galaxy density of every subset of galaxies
which is also function of k.

bias and correlation coefficient of intrinsic “lensing” signal of every subset of
galaxies which is also function of k.

even worse: there are huge number of cross-correlation terms

(Giagig) = Pg = by b%z fgﬁpm

<gzoz/£’1ﬂ> Pg o bg Bz zaﬁpm
<’{ia’£iﬁ> PK,K, i bK, blﬁ‘, RK Pm

Z ’LOé
Structure-formation models W|II never be able to tell us what all these should
be; neither will we be able to conduct an analysis in which they are all free, so
some model with limited number of parameters will be necessary. But it
shows that present modeling is grossly simplified even in Gaussian

approximation.
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Prior Salvation

® N-body modeling will provide prior on the mass power (exact prior at
low k, weaker at high k). Will depend on:

® Primordial spectral parameters {A37 ns}

® Transfer function parameters {wm, Wh, w,,}
® Growth function at each redshift shell {GZ}
® maybe some more, for modified gravity.

® Physical model for galaxy biases/covariances may be possible: halo model
in Hu & Jain, but substantial additional “adjustment” parameters likely.

® |ntrinsic alighment models of useful precision are not likely, so we’ll need
generic functional models (polynomials, etc.).

® Note that the observational Fisher matrix already includes all “galaxy-
galaxy” lensing and “cross-correlation” information.

® Also if there are spectroscopic survey samples, they become “sets” and
their cross-correlation with source galaxies incorporates Newman'’s
technique for constraining source redshifts.
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Prior from Redshift Survey

® An unbiased and complete redshift survey of [V, galaxies in set yields
observables /V,,; counts of galaxies in each subset. The likelihood is

L({Nai}{pai}) = H plVei
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Three-point information

® The expected bi

spectrum can also be expressed in terms of

the same dark-energy-agnostic parameters as the general 2-
point function; in approximation of Scoccimarro &

Couchman, 3-pt
spectra.

is a function of the linear & non-linear power

® |mplement as in Takada & Jain, gaussian error model for the
bispectrum components. lgnore intrinsic 3-pt correlations,

etc., for sanity

® Takada & Jain (in prep) show that Gaussian-uncertainty
approximation isn’t too bad. Just add a new 3-pt Fisher

matrix to the 2-

® More complex t

Dt Matrix.

nan PS, likelihood does not separate into ilm

terms; must limit to <~5 redshift bins for feasible

computation.
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Peak-Counting Information

® Presume that peaks in convergence distribution are located using a
multiscale filter matched to angular and redshift dependence of
clusters (as per Marion & Bernstein). Observables are peak counts vs
convergence strength and redshift above safe detection threshold.

® Sheth-Tormen formula gives convergence peak counts as simple
function of linear power spectrum plus growth and distances to
redshift shells - again dark-energy agnostic parameter set.

® Build Fisher matrix assuming Poisson errors (and clustering).

® Takada & Bridle show that cluster counts are reasonably independent
of 2-point statistics (but bispectrum?)
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Results
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Results on spectroscopic prior: Zhaoming Ma

® Use simplified case of power-spectrum tomography, no
intrinsic alignments, no shear cal errors, simple DE model.

® But now allow photo-z error distribution to be more
complex than Gaussian, formalism allows arbitrary
parametric function. Choose sum of up to 4 Gaussians, so
8 parameters per dz=0.I| instead of just 2 params.

® Drop assumption that true n(z) is known; we only know
distribution of photo-z’s.

® Now plot dark-energy uncertainty versus size of unbiased
spectroscopic redshift survey.
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Results on spectroscopic prior: Zhaoming Ma
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Results on spectroscopic prior: Zhaoming Ma

® Use of single-Gaussian model underestimates size of

required training set by few-x, or overestimates DETF
FOM by 40-100%, depending upon true fiducial model.

® Few 10,000 - 100,000 spectra are sweet spot for LSST or
SNAP-scale survey (but must be complete!)

® 6- and 8-parameter photo-z distributions are not really
worse than 4-param distributions; convergences occurs
since VWL does not care about detailed structure in z.

® Full simulation under development will treat catastrophic
errors, non-parametric (discrete) z distributions, inclusion
of bispectrum, cross-correlations, intrinsic alignments, etc.
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(Near!) Future results

® Quantify the constrained distance-growth combinations
from a WL + galaxy survey of given size and source
density, coupled with spectro survey of given size.

® Can construct a figure of merit from this information, or
project it onto any chosen model.

® Example:Albrecht & Bernstein, project DE proposals
onto a DE model with arbitrary w function.

® Optimize suites of experiments, determine required
photo-z calibration size and shear-systematic levels.

® |ater:same code can analyse SKA lensing, recombination-
era or CMB lensing constraints, or any combination.
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Example:Albrecht’s EOS PCA metrics

Stage 4 Space WL Optimisitic

Describe w(a) as a stepwise
function.

Express constraints as a
series of eigenfunctions

About 2 eigenfunctions
constrained to <o0.5 accuracy
when current experiments
are complete.

5-7 useful constraints with
future data

A. Albrecht & GMB (2007),
extension of Dark Energy lask_

Force work.

In this view, space gain has
larger numerical value.




