The Evolution of Dust in Optically-Selected Galaxies over the last 4 billion years

Nathan Bourne

with

Loretta Dunne Steve Maddox Herschel-ATLAS GAMA team

UNITED KINGDOM · CHINA · MALAYSIA

- Introduction
- Stacking
- Sub-mm fluxes of ordinary galaxies
- Analysis and Interpretation
- Dust temperature and mass
- Obscuration of star-formation
- The nature of red galaxies

Outline

Introduction

- Stacking
- Sub-mm fluxes of ordinary galaxies
- Analysis and Interpretation
- Dust temperature and mass
- Obscuration of star-formation
- The nature of red galaxies

Motivation

- Bimodality of galaxies
 - red vs. blue
 - elliptical/spiral
 - emission lines
 - ... dust content?
- Dust traces SFR...?
- Warm dust
 IRAS, Spitzer
- Cold dust
 SCUBA, Herschel

Motivation

SFR Density at Low redshifts:

- Strong evolution with z
- Dominated by low-luminosity systems: disk-mode star-formation in ordinary spirals

Herschel-ATLAS & GAMA

- 550 deg² imaging at 100, 160, 250, 350, 500µm with PACS and SPIRE instruments
- Noise level close to confusion limit
- 135 deg²H-ATLAS/GAMA overlap in equatorial fields at 9^h, 12^h, 15^h
- GAMA photometry in NUV, FUV, ugrizYJHK (Hill+11)
- ~99.9% complete down to r=19.8 (Baldry+11)
- Spectroscopic redshifts for 90% of sample at r<19.8</p>
- Photometric redshifts otherwise
- Stellar masses from *ugriz* (Taylor+11)

- Introduction
- Stacking
- Sub-mm fluxes of ordinary galaxies
- Analysis and Interpretation
- Dust temperature and mass
- Obscuration of star-formation
- The nature of red galaxies

Stacking 86,000 SDSS galaxies in the sub-mm

- Optical selection unbiased by dust properties
- Unprecedented sub-mm sky coverage providing large number statistics at low redshift
- UV-NIR photometry aids classification of sample to explore dependencies

The First Large-Scale Census of Dust in Normal Galaxies at Low Redshift

Stacking strategy

- 3 colour bins to isolate red sequence and blue cloud
- 5 bins of absolute magnitude (M_r) or stellar mass
- 6 redshift bins test for evolution

Confusion and blending

Three problems to consider:

- Unresolved background (faint high-z sources)
 - \rightarrow subtract a flat sky background
- Blending with detected background sources (mostly bright high z sources)
 - \rightarrow fit & subtract
- Blending between sources in the GAMA catalogue

- Introduction
- Stacking
- Sub-mm fluxes of ordinary galaxies
- Analysis and Interpretation
- Dust temperature and mass
- Obscuration of star-formation
- The nature of red galaxies

Sub-mm fluxes of optically selected galaxies

Fluxes can be biased by lensing

- Galaxies that are aligned with background sources will act as strong gravitational lenses
- The magnified flux of the high-z lensed source (SMG) can significantly boost the sub-mm flux of the low-z target, due to negative k-correction and low resolution in the sub-mm

- Can be a problem if we stack many foreground galaxies which...
 - are intrinsically faint in comparison to the lensed sources
 - have a gravitating mass profile that provides a strong magnification factor (e.g. spheroids)

Estimating the lensing contamination to red galaxies

Estimating the lensing contamination to red galaxies

Estimating the lensing contamination to red galaxies

- Integrate the source counts of strong lenses (Lapi+11) to obtain total lensed flux per square degree
- Use HALOS (Gonzalez-Nuevo+12)redshift distribution to estimate how much of this flux is lensed by low redshift galaxies (z<0.35)
- Compare to measured flux from red galaxies

	Total surface brightness (Jy deg^{-2})				
	$250\mu{ m m}$	$350\mu{ m m}$	$500\mu{ m m}$		
All lensed flux	1.09	1.34	1.22		
Lenses at $z < 0.35$ 3- σ upper limit	$\begin{array}{c} 0.23\substack{+0.09\\-0.06}\\(0.50)\end{array}$	$0.28\substack{+0.12\\-0.07}\\(0.62)$	$0.26^{+0.11}_{-0.07}$ (0.56)		
Red galaxies	2.6 ± 0.5	1.6 ± 0.2	0.8 ± 0.1		
Fraction	$0.09^{+0.04}_{-0.03}$	$0.18^{+0.08}_{-0.05}$	$0.32^{+0.14}_{-0.09}$		
3- σ upper limit	(0.19)	(0.39)	(0.68)		

Original results

Lensing-subtracted Results

Evolution of Infrared Luminosities of normal galaxies

250µm or total IR luminosities evolve with redshift at fixed M_{star}

- **blue** ~(1+z)⁴
- green ~(1+z)³

- red ~(1+z)⁶

 Agrees with previous results for radio and FIR luminosity evolution over larger z ranges: Oliver+10; and Magnelli+09, Damen+09, Dunne+09, Pannella+09, Karim+11, etc etc

Evolution of the FIR/sub-mm LF

The Cosmic SED

Predictions vs. observations of the total luminosity density of the universe at z=0

The Cosmic Infrared Background

- Total stacked intensity, completeness-corrected, of all r<19.8 galaxies up to z=0.35
 - Contribution to the CIB:

		$250\mu{ m m}$	$350\mu\mathrm{m}$	$500\mu{ m m}$
			% of CIB	
	Total Stack	5.27 ± 0.42	3.89 ± 0.32	2.94 ± 0.23
Complete to M _r * =-21.4	> 0.01 < z < 0.28	4.42 ± 0.36	3.20 ± 0.27	2.42 ± 0.20
	0.01 < z < 0.12	1.64 ± 0.18	1.12 ± 0.14	0.81 ± 0.09
	0.12 < z < 0.17	1.03 ± 0.11	0.74 ± 0.08	0.55 ± 0.06
	0.17 < z < 0.22	0.90 ± 0.09	0.67 ± 0.08	0.52 ± 0.05
	0.22 < z < 0.28	0.86 ± 0.09	0.68 ± 0.08	0.54 ± 0.06
	0.28 < z < 0.35	0.85 ± 0.08	0.68 ± 0.08	0.52 ± 0.05
60% = blue cloud	Blue	3.21 ± 0.28	2.36 ± 0.22	1.78 ± 0.16
20% = green valley	Green	1.19 ± 0.10	0.88 ± 0.08	0.68 ± 0.06
20% = red galaxies	Red	0.87 ± 0.10	0.65 ± 0.08	0.47 ± 0.05

Outline

- Introduction
- Stacking
- Sub-mm fluxes of ordinary galaxies
- Analysis and Interpretation
- Dust temperature and mass
- Obscuration of star-formation
- The nature of red galaxies

SED Fitting

 Fit greybody SEDs to the three stacked fluxes in each bin (250, 350, 500 µm points)

 $S_{\nu} \sim \nu^{\beta} B(\nu,T)$

- Must assume constant β but then can constrain temperatures
- Blue galaxies show correlation with mass
- Significant difference between dust temperatures of red and blue galaxies
- Doesn't appear to be due to lensing (at 2.4σ level)
- Robust to contamination of 500µm band by additional confusion or extended flux

Dust Temperatures

Dust Masses

 $M_{\text{dust}} = \frac{S_{250} D_{\text{L}}^2 K(z)}{\kappa_{250} B(\nu_{250}, T_{\text{dust}}) (1 + z)}$

- M_{dust} dependent on T
- L dependence partly due to T, partly due to M

- M responsible for evolution with z
- Hence evolution of DMF
- T (& M?) responsible for colour dependence

Dust Masses

- M_{dust}/M_{star} strongly anti-correlated with M_{star}
- If dust mass traces gas mass, 'dwarfs' have converted less of their gas into stars
- and high dust masses in dwarfs imply dust must be produced in SN (and grow in the ISM) unless a top-heavy IMF -H.Gomez+ (in prep)

Dust Masses

- Dust masses of red and blue galaxies typically differ by factors 2-3
- Red galaxies also appear to have colder dust than blue
- Contrast with literature data on spiral versus elliptical samples: typical ellipticals have at least an order of magnitude less dust than spirals, but similar dust temperatures (e.g. HRS - M.W.L. Smith+12)
- Also Rowlands+12: median dust mass of Herschel-undetected ellipticals much lower than our red sample
 - red galaxies != ellipticals
- Also possibility of environmental dependence of dust masses
 see HRS, HeViCS, HeFoCS...

Outline

- Introduction
- Stacking
- Sub-mm fluxes of ordinary galaxies
- Analysis and Interpretation
- Dust temperature and mass
- Obscuration of star-formation
- The nature of red galaxies

Obscuration of Star Formation

 Luminous red galaxies have increasing levels of obscuration at higher z and lower luminosity or mass

The Nature of Red Galaxies

- Low redshift galaxies (z<0.3) account for about 5% of the 250µm CIB ~60% of this from the blue cloud, ~20% from red sequence most extragalactic sub-mm light comes from high redshifts
- Stacked fluxes of red galaxies can be significantly contaminated by lensing (~10% at 250µm; ~30% at 500µm) - but we can correct for this
- Blue galaxies are up to 10x more luminous in the sub-mm than red galaxies, apparently due to higher dust temperatures which may result from higher SFRs
- Red galaxies have colder dust and probably less dust mass, but only by a factor ~2-3, typically
- Red (and blue?) galaxies are more obscured at higher z and lower mass