

The Obscured Star Formation History of the Universe revealed by the SCUBA-2 Cosmology Legacy Survey

Nathan Bourne

University of Edinburgh

In collaboration with Jim Dunlop, Shegy Parsa (Edin), Emiliano Merlin (Rome), Corentin Schreiber (Leiden), the AstroDEEP consortium, and the SCUBA-2 Cosmology Legacy Survey team

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 312725

Why study obscured star formation at high redshifts?

INTRODUCTION

The Cosmic Star Formation History

The cosmic star formation history: Building up the galaxy population

- We need to constrain models for the formation and evolution of baryonic structures
- Important observational constraints come from the universal SFR density evolution, and the evolution of the typical specific star formation rates of individual galaxies
- Measuring SFR at high z: most widely available tracers are FUV and FIR

Herschel probed the obscured SFR of the full star-forming population at z<3

- At z>3, FIR measurements are only possible for rare or unrepresentative systems
- Best estimates of SFRD at higher z come from rest-FUV LFs based on Lym (e.g. Bouwens et al., Bowle
- These UV-only methods re corrections whose calibrat at high redshift...

A Madau P, Dickinson M. 2014. Annu. Rev. Astron. Astrophys. 52:415–86

SFR density and obscuration at high-z

How well do we understand SFR measurements at high redshift?

- Dust is a severe obstacle to measuring total SFRs from the UV
- IR SFRs >> UV SFRs
- The obscuration is higher at the peak epoch of SF (z=2) than at z=0
- Beyond z=2-3, it is more uncertain...
- Herschel surveys limited by **confusion**
- ALMA etc limited by sampling

Predicting dust obscuration

How to estimate this in the absence of FIR detections?

- Need a calibration based on UV slope the "IRX-beta" relation
- But this needs better validation at high redshifts

Where do we stand?

- Need better observations of rest-frame FIR emission from high-redshift star-forming galaxies
 - Current data begin to run out just when things are getting interesting
- It is very hard to measure FIR emission from representative samples of galaxies at high redshift
 - the confusion limit is a fundamental barrier to observations
 - due to high source density and diffraction-limited resolution
- SFRs at high redshifts can be inferred from the UV emission of individual star-forming galaxies, corrected for dust obscuration based on an assumed intrinsic spectrum and attenuation law
 - However, these assumptions are poorly tested at high redshift
 - Furthermore, UV-selected Lyman Break samples may not be a good tracer of the overall population of star forming galaxies at high redshifts
- What we need is an unbiased measurement of total SFR in complete samples of star forming galaxies at high redshifts

How to address these problems with the available data?

METHODS

Breaking through the confusion limit

wavelength / μm	PSF FWHM / arcsec
JCMT/SCUBA-2 450	7.5
850	14
250	18
350	24
500	35
	wavelength / μm 450 850 250 350 500

Breaking through the confusion limit

- COSMOS-CANDELS 450µm: ~3mJy rms unfiltered
- ~100 sources detected at SNR>4
- Prior information on thousands more galaxies in the field:
 - HST, Spitzer and ground-based surveys
 - CANDELS/3DHST near-infrared selected samples
 - Photometric+grism redshifts and SED measurements including stellar masses
- Using prior-based deconfusion...

Detected sources

Breaking through the confusion limit

- COSMOS-CANDELS 450µm: ~3mJy rms unfiltered
- ~100 sources detected at SNR>4
- Prior information on thousands more galaxies in the field:
 - HST, Spitzer and ground-based surveys
 - CANDELS/3DHST near-infrared selected samples
 - Photometric+grism redshifts and SED measurements including stellar masses
- Using prior-based deconfusion:
 - T-PHOT (Merlin+15,16)
 - measure fluxes of much denser sample
 - Obtain full covariance matrix
- Prior sample selection:
 - must be sufficient to describe the emission in the map but not over-fit
 - We select a stellar-mass limited sample with complete redshift and SED info from 3DHST

3D-HST near-IR selected galaxies

Measuring average FIR SEDs

- TPHOT: fit the submm images with prior positions to obtain flux measurements for all galaxies in the sample
- Bright sources are individually detected with similar significance to traditional source extraction
- To study full sample, divide results into bins and stack the measurements in each, accounting for confusion/covariance between priors with measurement errors
- Bin priors by redshift, stellar mass, M_{UV} ...
- Repeat in 100, 160, 250, 450, 850 μm maps (from Herschel and SCUBA2)
- Fit SEDs to measure average IR luminosity and thus obscured SFR

STAR FORMATION RATES AND OBSCURATION

Results (I):

SFR

comparing FIR, UV, and mass-selected samples:

SFR_tot = SFR_IR + SFR_UV

SFR Obscuration

 L_{IR}/L_{UV} strongly correlated with mass and M_{UV}

- More massive galaxies have higher SFR, and more of their star formation is obscured
- High FIR luminosities trace galaxies with the highest SFRs (wide range of obscuration)
- High UV luminosities trace the most unobscured star-forming galaxies

Obscuration as f(M, L_{UV}) $L_{IR}/L_{UV} \sim M_{star}^{0.7} L_{UV}^{-0.6}$ – independent of z

 The most obscured galaxies are the ones with the highest stellar mass and lowest UV luminosity, but obscuration doesn't depend on redshift
...See also previous Herschel work – Buat+12, Hilton+12, Heinis+14, etc

The IRX-beta relation

Meurer+99 law

Obscuration (IRX= L_{IR}/L_{UV}) should be linked to UV slope β

- Excluding passive galaxies based on UVJ colours
- M<10¹¹M_☉ galaxies close to Meurer law
- M>10¹¹M_☉ galaxies have higher extinction for given UV slope

See also Coppin+15; Alvarez-Marquez+16; Bouwens+16 (studies of z~3 LBGs)

COSMIC STAR FORMATION DENSITY AT Z<6

Results (II):

Cosmic SFR density in massive galaxies

- SFRD peak at z~2
- SFRD in massive galaxies is dominated by obscured SFR
- 1/5 of SFRD from $L_{UV}>L^*$ galaxies (also obscured)
- 1/3 of SFRD from 450µm-detected sources

Cosmic SFR density in all galaxies

- Including UV emission from full LF integrated to -15 (Parsa+16)
- SFRD peak at z=2-2.5
- z<3: dominated by obscured SFRD (peaks at z=2)
- z>3: unobscured SFRD takes over (this peaks at z=3)

Cosmic SFR density in all galaxies

- SFRD at high-z broadly consistent with Behroozi+13, Madau & Dickinson14
- UV-corrected SFRD from the literature at z~5 is consistent with our IR+UV
- The early universe (z>3) is increasingly dominated by unobscured SFRD
- But the peak epoch of SFRD (z=1-3) is dominated by obscured growth of high-mass galaxies and in this regime, Meurer dust corrections are inadequate

Take-home messages

- Strong relationship between IR/UV, L_{UV} and M_* , independent of redshift: $L_{IR}/L_{UV} \simeq M_{star}^{0.7} M_{UV}^{0.6}$
- UV luminosity traces obscuration rather than SFR
- More massive galaxies have higher SFR and higher IR/UV
- The SFRD is mostly obscured at z=1-3, and is dominated by the growth of high-mass star-forming galaxies
 - These galaxies are heavily obscured and Meurer dust corrections are insufficient
- At z>4, the SFRD is predominantly unobscured and is dominated by lower-mass galaxies
 - Because they have lower stellar mass, Meurer dust corrections appear to be successful

If you want to know more? \rightarrow arXiv:1607.04283

Thank you for listening...... any questions?