Herschel-ATLAS: Understanding tracers of dust and gas

A CO survey of local sub-mm selected galaxies
Nathan Bourne and the H-ATLAS team

Introduction

We present an analysis of the relationships between different components of
the interstellar medium (ISM), in a novel sample of 20 dusty spiral galaxies and
early types selected at 500 microns 1n the local Universe. Using extensive
photometric coverage of the far-infrared (FIR) spectral energy distribution (SED),
we measure correlations between the continuum flux at various wavelengths
and various spectral line tracers of the ISM.

We have mapped the foo-micron selected galaxy sample in the CO(3-2) and
CO(2-1) hnes using JCMT observations, and we use archival a2icm spectra from
HIPASS for HI line measurements. The motivation for this work is to understand
whether FIR and sub-mm photometry are reliable tracers of the ISM and/or
star formation rate (SFR) in cold-dust dominated galaxies.

Figure 2 How well do CO/HI and FIR fluxes correlate?
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Figure 1 The spectral energy distribution of dust emission: These example SEDs (fitted to
galaxies in our sample using Magphys™) illustrate that thermal dust emission at A>20um can take different forms
depending on the relative contributions from dust in different phases of the ISM. Emission near the ~100um peak

of the SED is dominated by dust in stellar birth-clouds heated by young stars, and is correlated with the SFR°.
Longer (sub-mm) wavelengths are dominated by cold dust in the large-scale ISM: this may be heated by UV

light escaping from the birth-clouds, or by light from older stellar populations.

NGC 5713  HATLAS_J144011.1-001725_noUV, z= 0.01, chi2 = 4.35

11E-
= ™ Unattenuated s L UL
FLirlrE B ust apsorption --> emission ¥ i)
= _J'l Wﬁm . b 3
i 9 (I U N B/ Bluestarburst: & = ““;
S TE NUT hot SED HTTEN:
sE | dominated by dust I3
- in birth-clouds -

D= T PRI L
SFN = s KD EX IO F F----—---Er--4£3--—- . e B
-5E =
0.1 g 10.0 100.0 1000.0

Rest Wavelength / um

Molecular gas (Hs) In galaxies 1s commonly traced by the

more readily observable rotational CO emission lines. High
excitation lines such as CO(3-2) trace the warmer, denser
gas that 1s the direct fuel for star formation. The lower
excitation temperatures of the CO(1-0) and CO(2-1) lines mean

that they are better tracers of the total H, mass.’

Figure 3 The FIR-CO and FIR-HI correlations
as a function of wavelength:
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eWe measured Spearman's rank (rg) and yx° for corre-

lations with 22-500um fluxes from WISE, IRAS, & Herschel.
eSpearman's rank for CO(3-2) is highest for A=100um and
declines towards both shorter and longer wavelengths.
oFor HI the trend 1s reversed.
¢CO(2-1) appears to follow the same trends as HI at
A>60um, but more data are needed to confirm this.
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¢ Analogously, the scatter (y°) in the correlations follows
the opposite trends to rg
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NGC 5750 HATLAS_J144611.2-001324_noUV, z= 0.01, chi2 = 1.10
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Our results have implications for the relationships
between different dust and gas phases in the ISM:

*From Figure 3 we deduce that dense molecular gas
[responsible for CO(3-2) emission] is more strongly
associated with warm dust (which dominates at
A~100um) than cold dust (which dominates at A=250um).
This 1s consistent with the notion of dense gas being
the fuel for ongoing star formation, which is directly
traced by emission from warm dust.

*0On the other hand, if CO(2-1) and HI trace the
molecular and atomic gas masses respectively, we
would expect them to be correlated with the warm
dust (~SFR) as a result of the Schmidt-Kennicutt law”®,
yet the correlation at A~100um 1s poor. These tracers
are better correlated with the sub-mm, suggesting
that the gas mass is more closely linked to the total
dust mass via the dust/gas ratio.

¢ The high level of scatter in the correlations between
dense CO and the sub-mm suggests that the sub-mm
does not directly trace SFR, but rather diffuse dust
(and gas) which 1s not associated with star formation.

*The 22 & 6oum fluxes correlate worse with CO(3-2)
and better with HI compared with 10oum, suggesting
an emission component that is uncorrelated with SFR.
This 1s likely to be very-small grain emission, which
appears to be better correlated with the diffuse

phase of the ISM than with dense molecular clouds.”

References

1 Da Cunha et al. 2008, MNRAS, 388, 1595 6 Young & Scoville 1991, ARARA, 29, 581
2 Smith, D.J.B. et al. 2012, MNRAS, 427, 703 7 Schmidt 1959, ApJ, 129, 243
3 Kennicutt 1998a, ARARA, 36, 189 8 Kennicutt 1998b, Apd, 498, 541

4 Walterbos & Greenawalt 1996, ApJ, 460, 696 9 Draine & Anderson 1985, ApJ, 292, 494
5 Bendo et al. 2010, ARA, 518, L65 10 Compiegne et al. 201, ARA, 525, A103



