

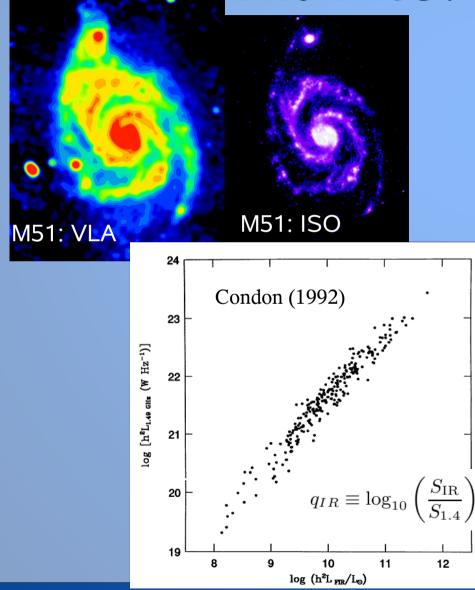
The Far-Infrared-Radio Correlation and SEDs of Massive Star-Forming Galaxies Over the Last 10 Billion Years

N. Bourne, L. Dunne, S.J. Maddox University of Nottingham, UK

R.J. Ivison University of Edinburgh, UK

> M. Dickinson NOAO, Tucson, USA

D. Frayer Spitzer Science Center, California Institute of Technology, USA


Summary

- Background to the FIR-Radio Correlation
- My work:
 - Sample selection
 - Stacking technique
 - Corrections and considerations

- Results and discussion:
 - Radio properties
 - IR Spectral Energy
 Distributions
 - K-corrections
 - FRC evolution
- Conclusions

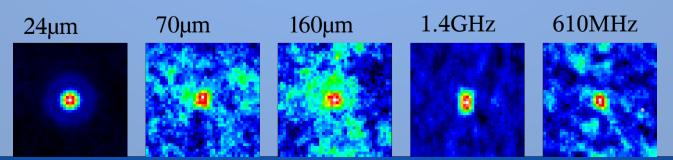
The FRC: Background

- Helou, Soifer & Rowan-Robinson (1985):
 - large IRAS sample revealed universality and tightness of the FIR/radio correlation in disks of spiral galaxies and starburst nuclei
- Later shown to hold over 5 orders of magnitude for local galaxies (e.g. Yun, Reddy & Condon 2001)

The FRC: Open Questions

• How to explain the tight correlation between thermal dust emission and non-thermal radio?

"Conspiracy Theories"

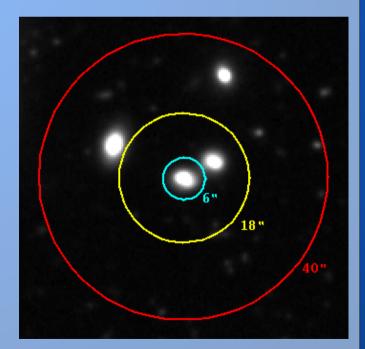


• What does the FRC tell us about star-formation in high redshift galaxies?

Data and Method

- 3500 IRAC-selected galaxies in the ECDFS
- Photo-z's from COMBO-17 and EAZY
- FIR imaging from Spitzer MIPS (FIDEL survey) at 24, 70, 160µm
- Radio imaging at 1.4GHz (VLA) and 610MHz (GMRT)
- Stacking in bins of redshift to trace properties of the 'typical' galaxies in the sample

Clustering, Confusion and Background Subtraction

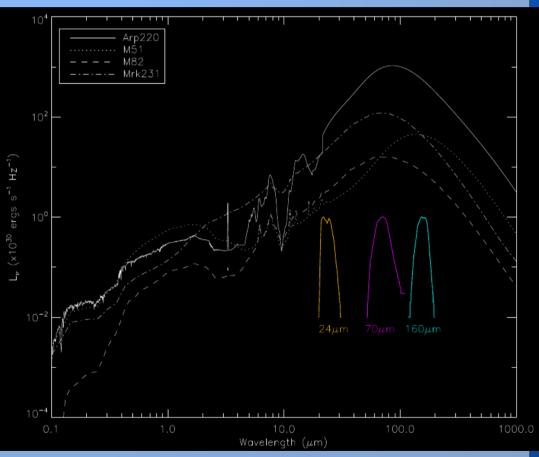

Poor resolution of MIPS imaging Clustered nature of massive galaxies

• Average fractional confusion flux from a background source:

$$F = n_E \int W_{D,E}(\theta) e^{-\theta^2/2\sigma^2} 2\pi\theta d\theta$$

• Modified Landy & Szalay (1993) estimator for correlation function:

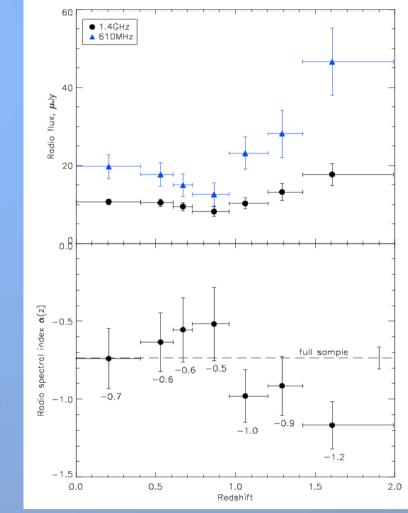
$$W_{D,E}(\theta) = \frac{DE - 2DR - RR}{RR}$$



Confusion!

K-corrections

- Predicting rest-frame fluxes so that we can compare high and low z
- Radio: simple power law, 2 data points → spectral index
- FIR: complicated SED profile, must try different SED templates and predict behaviour as f(z)

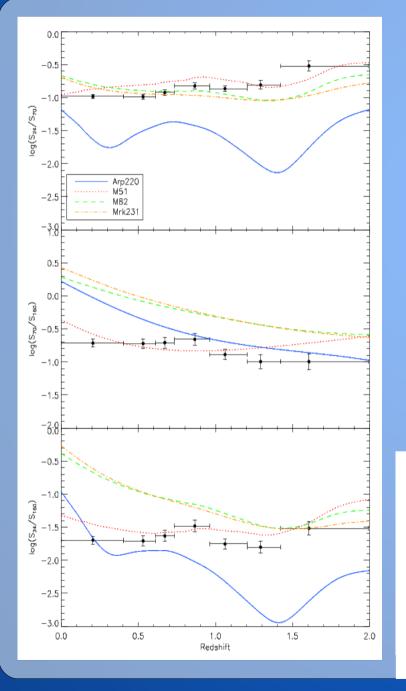


Results: Stacked Radio Fluxes

- Empirically determine spectral index and k-corr.
- Evolution of spectral index?
- Increasing radio luminosities with redshift

Bin	$L_{1.4}, WHz^{-1}$	$SFR_{1.4}, M_{\odot}yr^{-1}$
ZB0	$(1.26 \pm 0.08) \times 10^{21}$	$\frac{5141.4}{1.51 \pm 0.10}$
	1	
ZB1	$(1.13 \pm 0.10) \times 10^{22}$ $(1.84 \pm 0.01) \times 10^{22}$	13.6 ± 1.2
ZB2	$(1.84 \pm 0.21) \times 10^{22}$	22.1 ± 2.5
ZB3	$(3.00 \pm 0.46) \times 10^{22}$	36.0 ± 5.5
ZB4	$(6.24 \pm 0.84) \times 10^{22}$	75 ± 10
ZB5	$(1.32 \pm 0.22) \times 10^{23}$	158 ± 26
ZB6	$(3.03 \pm 0.47) \times 10^{23}$	364 ± 56

(SFR estimate - Condon 1992)



N. Bourne et al. The FIR-Radio Correlation in Massive Star-forming Galaxies

 $S_{\nu} \propto \nu$

Nottingham Astronomy Group

Results: FIR SEDs

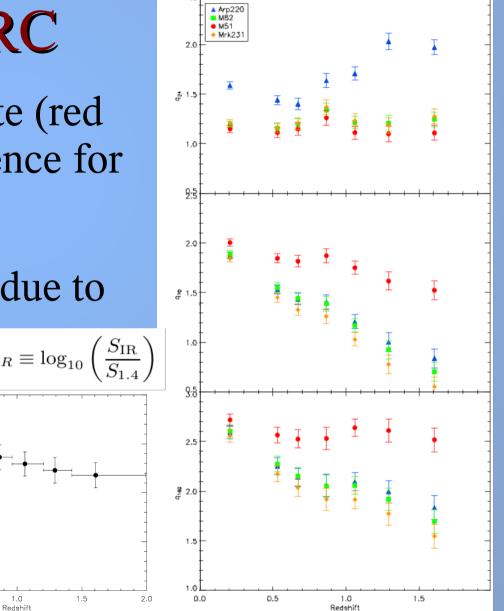
- Need to use an SED template for k-corrections
- Normal spiral SED best match
- Implies cold dust temperatures and moderate total IR luminosities
- See increasing L_{IR} with z

Bin	L_{TIR}, L_{\odot}	q_{TIR}	
ZB0	$(0.56 \pm 0.14) \times 10^9$	2.7 ± 0.1	
ZB1	$(2.8 \pm 0.7) \times 10^{10}$	2.4 ± 0.1	
ZB2	$(3.9 \pm 1.0) \times 10^{10}$	2.3 ± 0.1	
ZB3	$(6.8 \pm 1.7) \times 10^{10}$	2.4 ± 0.1	
ZB4	$(1.21 \pm 0.30) \times 10^{11}$	2.3 ± 0.1	
ZB5	$(2.19 \pm 0.55) \times 10^{11}$	2.2 ± 0.1	
ZB6	$(4.49 \pm 1.1) \times 10^{11}$	2.2 ± 0.1	
$(L_{_{TIR}} conversion - Dale \& Helou 1985)$			

After MIPS k-correction

Implications for FRC

- Assuming M51 template (red points) we see no evidence for evolution in q₂₄ or q₁₆₀
- What about q_{70} ? Is this due to the SED shape? $q_{IR} \equiv \log_{10} \left(-\frac{1}{2} \right)$


2.5

≝ 2.0

1.5

0.0

 Plotting integrated q_{IR}
 depends on accuracy of all bands

N. Bourne et al. The FIR-Radio Correlation in Massive Star-forming Galaxies

0.5

Conclusions

- Stacked FIR and radio images of an IRACselected sample as a function of z between 0-2
- Properties of the sample do evolve (radio spectrum, IR & radio luminosities)...
- But cold-dust dominated SEDs throughout
- Do not believe there is evidence for evolution in the FRC, although 70µm fluxes seem less reliable as a tracer than expected