The Cosmic FIR Landscape

The Dusty Universe at low redshift (z<0.4) revealed by H-ATLAS & GAMA

Nathan Bourne

with thanks to the Herschel-ATLAS and GAMA teams

Lisbon - 04/05/16

Plan for this talk

- Herschel-ATLAS cross-IDs:
 the nature of sources detected in a
 wide extragalactic sub-mm survey
- Dust in ordinary galaxies: the sub-mm properties of opticallyselected galaxies in the low-z universe
- The bigger picture:

what have we learned about the local universe from large Herschel surveys?

 Future prospects where can we go from here?

Phase I GAMA fields: 161 sq deg. 100-500µm

0de

SGE

2hr

4hr

0hr

22hr

- 5 bands 100-500µm
- PSF FWHM 9-36" (18" 250µm)
- In the GAMA fields, 114000 sources detected at 250µm at >28mJy (4sigma)
 - 38%, 9% detected at 350, 500µm
 - 8%, 14% detected at 100, 160µm

- Bourne et al. 2016 (submitted)
- IDs assigned based on Likelihood Ratios (Sutherland & Saunders 92) to SDSS r<22.4
- ~45000 (39%) SPIRE 250µm sources have reliable optical ID
- Underlying fraction is Q0 = 54% have a true ID in SDSS: therefore overall ID completeness is 72%
- 1% of these IDs are stars; 2% are quasars; 97% galaxies
- Broad redshift distribution of IDs up to z=0.8; most IDs are at z<0.5 which is due to the limiting depth of SDSS
- However, Herschel is sensitive to sources at both low and high redshifts - the estimated full z distribution has a second peak at z~1.5 (250µm) to 2.5 (500µm)

- · Bourne et al. 2016 (submitted)
- IDs assigned based on Likelihood Ratios (Sutherland & Saunders 92)
- ~45000 (39%) SPIRE 250µm sources have reliable optical ID
- Underlying fraction is Q0 = 54% have a true ID in SDSS: therefore overall ID completeness is 72%
- 1% of these IDs are stars; 2% are quasars; 97% galaxies
- Broad redshift distribution of IDs up to z=0.8; most IDs are at z<0.5 which is due to the limiting depth of SDSS
- However, Herschel is sensitive to sources at both low and high redshifts - the estimated full z distribution has a second peak at z~1.5 (250µm) to 2.5 (500µm)

- Aperture-matched UV to mid-IR photometry from GAMA allows us to explore the nature of galaxies selected by H-ATLAS
- The main GAMA sample is r<19.8: GAMA contains 52% of our galaxy IDs, but includes most of the galaxies at z<0.4

- Aperture-matched UV to mid-IR photometry from GAMA allows us to explore the nature of galaxies selected by H-ATLAS
- The main GAMA sample is r<19.8: GAMA contains 52% of our galaxy IDs, but includes most of the galaxies at z<0.4

- IDs sample broad range of magnitudes in UV, optical, NIR, MIR
- Flatter magnitude distribution in the optical and UV compared with GAMA main galaxy sample

Diversity of galaxies detected in H-ATLAS

Diversity of galaxies detected in H-ATLAS

IR luminosities and obscuration of Star-formation

Multiplicity of H-ATLAS IDs

- Reliability threshold assumes single counterparts
- Multiple real IDs will not be identified and will lead to incompleteness

With p xgal candidates:		
р	$N_{ m SPIRE}$	$N_{ m rel}$
0	41018	0 (0%)
1	50054	30716~(61%)
2	18029	11049~(61%)
3	4115	2251~(55%)
4	723	367~(51%)
5	96	41 (43%)
6	12	5~(42%)
7	2	1 (50%)
8	3	1 (33%)
9	0	0 (-)

Plan for this talk

- Herschel-ATLAS cross-IDs: the nature of sources detected in a wide extragalactic sub-mm survey
- Dust in ordinary galaxies: the sub-mm properties of opticallyselected galaxies in the low-z universe
- The bigger picture: what have we learned about the local universe from large Herschel surveys?
- Future prospects
 where can we go from here?

Stacking GAMA galaxies in H-ATLAS

- GAMA provides a rich multiwavelength catalogue and a complete redshift survey at low redshifts
- This makes it an ideal sample for investigating the galaxy population through statistical analysis
- Select sample based on optical properties: stellar population
- Stack into submm: probe dependence of dust emission on stellar population

FIR luminosities of optically-selected galaxies

 $(1+z)^{6}$ (red)

- Rest-frame L₂₅₀ of stacked GAMA galaxies
- Evolution: $(1+z)^4$ (blue) $(1+z)^3$ (green)

FIR luminosities of optically-selected galaxies

- L_{TIR} estimated by fitting the SPIRE data with templates from H-ATLAS (Smith et al. 2012)
- In total, GAMA galaxies with r<19.8 at z<0.35 contribute 4% of the 250µm CIB (60% from blue cloud galaxies)

Dust mass vs Stellar mass

- M_{dust} estimated from a single-component modified blackbody, $\beta=2$ (T free)
- Evolution ~ $(1+z)^4$ similar to evolution in dust mass function

Dust/stellar mass ratio

 Dust/stellar mass ratio strongly dependent on stellar mass and redshift; weakly dependent on colour

Dust/stellar mass ratio and optical colour

Dust temperature

- Dust temperature varies with stellar mass and optical colour
- Red sequence galaxies colder hence less luminous for the same dust mass

Plan for this talk

- Herschel-ATLAS cross-IDs: the nature of sources detected in a wide extragalactic sub-mm survey
- Dust in ordinary galaxies: the sub-mm properties of opticallyselected galaxies in the low-z universe
- The bigger picture:

what have we learned about the local universe from large Herschel surveys?

 Future prospects where can we go from here?

The H-ATLAS sample in context

 H-ATLAS samples typical starforming disc galaxies at low-z — in contrast to high SSFRs selected at rest-frame 250µm at high-z (Rowlands+14a; Smith+12)

Dust across the galaxy population

- Dusty galaxies with old stellar populations and early-type morphologies
- Dust and gas acquired in mergers
- Dust growth & destruction
- Role of environment fewer
 Virgo-cluster ETGs have high
 dust masses (Agius+15)

Dust across the galaxy population

- Dustiest galaxies in the local volume (Clark et al. 2015)
- Very late-type morphologies, blue UV/optical colours, low dust extinction
- High dust mass but very high gas mass and specific SFR:
- Early evolutionary stage

Dust tracing gas

- Mass-dependence of dust/ stellar mass ratio (Bourne+12) indicates similar dependence of gas/stellar mass ratio
- This is supported by a comparison with COLD GASS CO survey (Saintonge+11)
- Can we use dust to trace gas in large surveys like H-ATLAS?
- Would have to control for the metallicity dependence, and need good calibrations, e.g. from [CI]

Plan for this talk

- Herschel-ATLAS cross-IDs: the nature of sources detected in a wide extragalactic sub-mm survey
- Dust in ordinary galaxies: the sub-mm properties of opticallyselected galaxies in the low-z universe
- The bigger picture:

what have we learned about the local universe from large Herschel surveys?

 Future prospects where can we go from here?

Prospects

- The GAMA fields of H-ATLAS currently offer the best opportunity for exploring the low-z Universe with current data (both photometric and spectroscopic) from GAMA and other multi-wavelength surveys
- Still plenty of scope for further exploration and mining of existing datasets, e.g.
 - Environment studies using GAMA's complete redshift database and group catalogue
 - Exploiting WISE overlap for studies of obscured AGN
 - Using dust mass measurements to trace gas mass in galaxies
 - Benefits of GAMA pan-chromatic photometry...

Optimised matched photometry across all wavelengths and resolution regimes: LAMBDAR

• Wright et al. 2016

In conclusion

- H-ATLAS probes dust across a diverse range of low-z galaxies
- Sensitive to star-forming galaxies over a wide redshift range
- Synergy with GAMA and multi-wavelength surveys to study galaxy evolution in detail over 0<z<0.4
- Bourne et al. 2016: Optical IDs to all H-ATLAS 250um sources: redshifts and multi-wavelength properties for wide-field Herschel-selected sample
- Wright et al. 2016: optimised UV-submm photometry for all GAMA galaxies

