

Relationships between Gas and Dust in Local Dusty Galaxies

Nathan Bourne, Loretta Dunne, George Bendo, Steve Maddox and the H-ATLAS team

Does sub-mm dust emission trace cold gas?

- Does Herschel detect dust heated by young stars?
- Does it trace the SFR?
- A long-running debate e.g. Lonsdale Persson & Helou 1987; Walterbos & Greenawalt 1996;
- Recent evidence e.g. Bendo et al.
 2011; Boquien et al. 2011; Totani et al.
 2011; Boselli et al.2012; etc etc

- We know there are links between the dust and molecular & atomic gas phases in galaxies
- Dust also exists in several "phases" of the ISM:

Sample and observations

- 17 local (z<0.05) galaxies from H-ATLAS equatorial fields
- 500μm flux-limited sample
- FIR data covering the peak of the SED
- Cold SEDs not bright IRAS sources, but (mostly) spirals whose gas and dust content have not been studied previously
- The dustiest galaxies in the local Universe

Need to test the correlation between sub-mm flux and CO tracers of the dense molecular gas

- CO observations at JCMT:
 - CO(3-2) on HARP
 - CO(2-1) on RxA
- Detecting total extended flux from CO in each of the galaxies
- Archival HI data from HIPASS

500µm-selected galaxies

- Blue and dusty spirals; extended sources; generally isolated
- Also included the three brightest early-types in SDP from Rowlands et al. 2012.

500µm-selected galaxies

- Blue and dusty spirals; extended sources; generally isolated
- Also included the three brightest early-types in SDP from Rowlands et al. 2012.

e.g. NGC 5713

e.g. NGC 5719

Looking for correlations in the results

- Total CO fluxes
 CO(3-2) → warm, dense H₂
 CO(2-1) → cooler, more diffuse
 H₂; total molecular mass
- HI from HIPASS→ total atomic mass
- 60, 100µm from IRAS (Scanpi)
 → warm dust; total L_{IR}
- 100,160μm from PACS
- 250, 350, 500µm from SPIRE
 → cold dust; total dust mass

Longer wavelengths are less correlated with dense CO

... but are better correlated with HI

100µm traces dense gas; >250µm traces diffuse?

- CO(3-2) flux correlates best with 100μm
- CO(2-1) AND HI fluxes correlate better with flux at longer wavelengths
- Global sub-mm fluxes (>250µm) trace total gas mass
- But they are a poor tracer of dense molecular gas that fuels star formation
- Does this mean the cold dust is heated by evolved stars instead of young ones?

Cold dust heating by evolved stars

- Consistent with results from FIR colours in galaxies...
 - HRS galaxies Boselli+2012
 - M33 Boquien+2011 (HERM33ES) and Komugi+2011
 - JCMT Nearby Galaxies Legacy Survey (NGLS) Bendo+2012
 - M31 Smith+2012 (HELGA) , see also modelling by Groves+2012
- And recent results on the FIR CO relationship in other samples
 - Virgo cluster spirals Corbelli+2012 (HeVICS)
 - HI-selected galaxies in NGLS Wilson+2012

Conclusions

- A first look at the gas content of sub-mm selected galaxies in the local Universe
- CO is detected in most but the galaxies appear to be dominated by atomic gas: H2/HI in the range 0.05-0.9 (though uncertainty due to CO-to-H2 conversion)
- Dust/gas mass ratios in the range 0.002-0.009

- Scatter in the correlation between dust and gas tracers varies:
- CO(3-2), i.e. dense gas, is better correlated with 100µm
- CO(2-1), tracing cooler diffuse gas, is better correlated with 250-500µm
- HI is also better correlated with sub-mm (although HI and CO(2-1) are poorly correlated)
- All consistent with cold dust being uncorrelated with SFR, and being heated by older stellar populations

Slope of the CO-FIR relation

- Look at the ratios L_{co}/L_{FIR} and L_{HI}/L_{FIR} versus L_{FIR}
- Fitting for the slope:
 - Steeper slopes for longer wavelengths
 - And for denser gas tracers

Line ratios

- CO(3-2) / CO(2-1) in the range 0.0-1.0 apart from one outlier
- No strong correlations with any luminosities or morphological type

Gas and dust masses

- Most galaxies appear to be HI-dominated
 - H2/HI in the range 0.05-0.9 based on CO(2-1) where available
- Dust/gas mass ratios in the range 0.002-0.009
- Total gas masses ~10⁹-10¹⁰ M_{sun}
- Total dust masses ~10⁷-10⁸ M_{sun}

Gas and dust masses

- Most galaxies appear to be HI-dominated
 - H2/HI in the range 0.05-0.9 based on CO(2-1) where available
- Dust/gas mass ratios in the range 0.002-0.009
- ullet Total gas masses $\sim\!10^9 ext{-}10^{10}\,\mathrm{M}_{_{\mathrm{sun}}}$
- Total dust masses ~10⁷-10⁸ M_{sun}
- Cold dust temperature correlated with CO luminosity and gas/dust?

