Origin of the radio background

- ARCADE and the radio background
- General constraints
- Rejected hypotheses
- Very faint radio sources

Jack Singal Lukasz Stawarsz Vahe Petrosian Andy Lawrence

Andy Lawrence

Sept 2009

ARCADE experiment

Instrument paper : Singal et al 2009

Absolute radiometry of sky 3-90 GHz PI : A.Kogut

Balloon flight July 2006

Feed Horns view either sky or calibrator

Calibrator one of blackest microwave objects ever made

ARCADE measurements

Raw measurements

Flight pattern on top of WMAP 22GHz map

Binned Skymap

Result

Galactic foreground model linear combn of 408MHz and 158µm CII map

Results combine ARCADE, FIRAS, and low-frequency surveys

Looks like synchrotron

$$T_{BGND}\left(\mathbf{v}\right) = T_{R}\left(\frac{\mathbf{v}}{1 \, GHz}\right)^{\beta}$$

 $T_R = 1.17 \pm 0.12$ K @ 1 GHz, β = -2.60 ± 0.04

General Constraints

Not currently known radio sources

Mag field limit

Same electrons make IC x-γ background : ratio depends on B

 $B>1\mu G$

Not in IGM (nano-Gauss)

Similar to known radio galaxies and SNRs

Note also $\alpha=0.6$

IR background

Sources obeying standard radio/IR correlation also make FIR background

==> at most 40% of the CRB

Rejected Hypotheses

Missing Low Surface Brightness emission

- FRI tails ? No too steep
- Cluster relic sources ? No too steep
- Missing LSB population ?
 - No new ATLB survey suggests maybe +50%
- Bad beam correction in faint surveys ?
 - No repeats at different resolutions agree

Known Types of Source

- Radio Loud AGN : 16%
- Radio Quiet Quasars : <4%
 - otherwise exceed optical counts
- Radio Supernovae : 0.1%
- Star forming Galaxies
 - known sources : 10%
 - max contbn if obey IR/radio : <40%

Very Faint Sources

Counts compilation

Can extrapolated counts explain background ?

Bgnd from very faint sources

If close to Euclidean :

 $\begin{array}{l} S(min) \sim 0.1 \ \mu Jy \\ N(sky) \sim 10^{11} \ sources \end{array}$

Ordinary galaxies

- $10^{11} \sim$ galaxies in observable universe
 - HDF : 3000 gals in 2 arcmin : N=1.1x10¹¹
 - local lum fn : 0.02 gals/Mpc³ (>0.1 L*)
 - in volume to $z=6: N=5.7 \times 10^{10}$
- S=0.1 μ Jy ~ 10²² W/Hz at z=3
 - ==> $10^9 L_{sun}$ FIR equivalent
 - boring normal spirals, not LIRGs

Excess radio

- So ordinary star forming galaxies makes sense
- But requires radio/IR higher at high z
 - yes : Vlahakis et al 2007; Seymour et al 2009
 - no : Ibar et al 2008, Ivison et al 2009
- Physical reason : at high-z
 - More efficient CR formation ?
 - Higher B ?
 - Larger AGN fraction in normal galaxies ?

Further possible consequences

- SF history dominated by trickles not bursts ?
- or
- Early black holes more radio-active ?
- and
- SKA may be confusion limited ?

