Finite Element-Wavelet Hybrid Algorithm for Atmospheric Tomography

Misha Yudytskiy

• • • • • • • • • • •

March 26, 2014

Edinburgh, Scotland

This research was partially supported by the Austrian Science Fund (FWF): W1214-N15, project DK8.

Misha Yudytskiy

Tapio Helin

Ronny Ramlau

• • • • • • • • • • •

Finite element-wavelet hybrid algorithm for atmospheric tomography, in Journal of Optical Society of America A 31(3), 2014.

Wavelet-methods in multi-conjugate adaptive optics, in Inverse problems 29(8), 2013.

- Current algorithms for atmospheric tomography
- FEWHA for atmospheric tomography
- FEWHA: speed and quality

・ロト ・日下・ ・ ヨト・

- Use several guidestars (LGS & NGS)
- Goal: quality in the field of view

- Laser Tomography AO (LTAO)
- Multi Object AO (MOAO)
- Multi Conjugate AO (MCAO)

Atmospheric tomography:

WFS measurements \rightarrow layers

- Use several guidestars (LGS & NGS)
- Goal: quality in the field of view

- Laser Tomography AO (LTAO)
- Multi Object AO (MOAO)
- Multi Conjugate AO (MCAO)

Atmospheric tomography:

WFS measurements \rightarrow layers

- Use several guidestars (LGS & NGS)
- Goal: quality in the field of view

- Laser Tomography AO (LTAO)
- Multi Object AO (MOAO)
- Multi Conjugate AO (MCAO)

Atmospheric tomography:

WFS measurements \rightarrow layers

- Use several guidestars (LGS & NGS)
- Goal: quality in the field of view

- Laser Tomography AO (LTAO)
- Multi Object AO (MOAO)
- Multi Conjugate AO (MCAO)

Atmospheric tomography:

< □ > < □ > < □ > < □ > < □ >

Standard approach: MVM

Minimum variance turbulence profile estimate:

inverse noise covariance inverse turbulence covariance

$$(A^* C_{\eta}^{-1} A + C_{\phi}^{-1})\phi = A^* C_{\eta}^{-1} s$$

atmospheric tomography turbulence layers noisy measurements

• • • • • • • • • • • •

Standard approach: MVM

Minimum variance turbulence profile estimate:

1. Compute $\mathbf{R} = P(A^* C_{\eta}^{-1}A + C_{\phi}^{-1})^{-1}A^* C_{\eta}^{-1}$ (off-line) $\mathcal{O}(n^3)$ 2. Multiply $a = \mathbf{R}s$ (on-line) $\mathcal{O}(n^2)$

Standard approach: MVM

Minimum variance turbulence profile estimate:

Dimensions of **R** for E-ELT:

LTAO/MOAO: 99900×5402 MCAO: 66612×9296

Very high computational costs! (even with parallelization)

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

Alternative approach: iterative methods

Solve:

 $\underbrace{(A^* C_{\eta}^{-1} A + C_{\phi}^{-1})}_{M} \phi = A^* C_{\eta}^{-1} s$

iteratively: conjugate gradient (CG) method. No matrix inversion!

< □ > < □ > < □ > < □ > < □ >

Alternative approach: iterative methods

Solve:

$$\underbrace{(A^* C_{\eta}^{-1} A + C_{\phi}^{-1})}_{M} \phi = A^* C_{\eta}^{-1} s$$

iteratively: conjugate gradient (CG) method. No matrix inversion!

cost of CG pprox cost of applying $M \cdot \#$ of iterations

cost of applying M

- discretization
- representation
- parallelization

of iterations

- 🍾 warm restart
- 📡 preconditioning

< □ > < 同 > < 回 > < Ξ > < Ξ

Alternative approach: iterative methods

Solve:

$$\underbrace{(A^* C_{\eta}^{-1} A + C_{\phi}^{-1})}_{M} \phi = A^* C_{\eta}^{-1} s$$

iteratively: conjugate gradient (CG) method. No matrix inversion!

cost of CG pprox cost of applying $M \cdot \#$ of iterations

cost of applying ${\it M}$

- discretization
- representation
- parallelization

Iterative algorithms:

- FD-PCG $\mathcal{O}(n \log n)$
- FrIM $\mathcal{O}(n)$

of iterations

- 📐 warm restart
- 🔪 preconditioning

Alternative: 3-step methods:

- Kaczmarz $\mathcal{O}(n)$
- Gradient-based $\mathcal{O}(n)$

 $\circ \ \mathsf{CG} \ \mathcal{O}(n) \longrightarrow \mathsf{CF} \to \mathsf{CF} \to \mathsf{CF}$

Discretization of layers with wavelets

Concept: use wavelets to represent turbulence layers

Wavelets:

- tool to represent and analyze signals
- used in JPEG compression

Image: A math the second se

Discretization of layers with wavelets

Concept: use wavelets to represent turbulence layers

Wavelets:

- tool to represent and analyze signals
- used in JPEG compression

Wavelets decomposition of a layer:

Advantages of wavelets:

- good approximative properties
- discrete wavelet transform (DWT)
 DWT is O(n), parallelizable!
- useful properties in frequency domain
 o efficient representation of turbulence statistics

Advantages of wavelets:

- good approximative properties
- discrete wavelet transform (DWT)
 DWT is O(n), parallelizable!
- useful properties in frequency domain
 o efficient representation of turbulence statistics

Von Karman:

$$C_{\phi} = c\mathcal{F}^{-1}M\mathcal{F}$$
$$(Mf)(\xi) = |\xi|^{-11/3}f(\xi)$$

 $C_{\phi} \simeq c W^{-1} D W$

$$D = \frac{\text{diag}(..., 2^{-\frac{11}{3}j}, ...)}{j...}$$
 wav scale

Dual domain discretization:

イロト イ団ト イヨト イヨト

Dual domain discretization:

operator M

- sparse in bilinear / wavelet domains
- matrix-free representation
- parallelizable (shared memory!)

イロト イ団ト イヨト イヨト

Dual domain discretization:

operator M

- sparse in bilinear / wavelet domains
- matrix-free representation
- parallelizable (shared memory!)

of iterations

- 📐 warm restart
- \searrow frequency-dependent preconditioner

イロト イヨト イヨト イヨト

∑ ground layer multi-scale (GLMS)

Dual domain discretization:

operator M

- sparse in bilinear / wavelet domains
- matrix-free representation
- parallelizable (shared memory!)

of iterations

- 📐 warm restart
 - ∑ frequency-dependent preconditioner

∑ ground layer multi-scale (GLMS)

 \rightarrow FEWHA: $\mathcal{O}(n)$ complexity

- ✓ fast convergence
- ✓ parallelizable

Ground layer multi-scale (GLMS) method

Multi-scale method:

Coarse scale sub-problem:

M. Yudytskiy (RICAM)

Modularity:

- Systems: LTAO / MOAO / MCAO / (SCAO too)
- Sensors: Shack-Hartmann LGS / NGS / tip-tilt (low order NGS)
- Control: closed loop (pseudo-open loop control) / open loop

< □ > < 同 > < 回 > < Ξ > < Ξ

Modularity:

- Systems: LTAO / MOAO / MCAO / (SCAO too)
- Sensors: Shack-Hartmann LGS / NGS / tip-tilt (low order NGS)
- Control: closed loop (pseudo-open loop control) / open loop

Easy to update (at runtime):

- star position
- photon flux, C_n^2
- DM / WFS alignment

- no matrix inversion
- o swap a few numbers in memory

< □ > < 同 > < 回 > < Ξ > < Ξ

Modularity:

- Systems: LTAO / MOAO / MCAO / (SCAO too)
- Sensors: Shack-Hartmann LGS / NGS / tip-tilt (low order NGS)
- Control: closed loop (pseudo-open loop control) / open loop

Easy to update (at runtime):

- star position
- photon flux, C_n^2
- DM / WFS alignment

Parameters:

not parameter-free

- no matrix inversion
- o swap a few numbers in memory

• but few and easy to tune

Quality: Summary

Numerical simulation:

- ESO's OCTOPUS
- 1 second (500 time-steps)
- 9 layer "ESO standard" atmosphere
- 42 m E-ELT configuration

	LTAO	MCAO	
Star asterism	6 LGS @ 7.5' diam	6 LGS @ 2' diam	
	3 NGS @ 10' diam	3 TTS @ 2.67' diam	
SH-WFS	84×84 LGS	84×84 LGS	
	84×84 NGS	2×2, 1×1 TTS	
DM(s)	1	3	
Probe-stars	1 (zenith)	25 over FoV	
Benchmark	FrIM by ESO	MVM by ESO	
FEWHA	9 layers,	9 layers, fitting	
	projection	3 layers on DMs	

• LGS: cone effect / tilt-tilt indetermination / spot elongation

Quality: LTAO spot elongated

Algorithm: 4 it.

March 2014 13 / 18

• • • • • • • • • •

Quality: LTAO spot elongated

[•] Algorithm: 4 it. / 10 it.

Image: A math the second se

Quality: MCAO spot elongated

	MVM	FEWHA
Setup	$\mathcal{O}(n^3)^*$	$\mathcal{O}(n)$
	(matrix inversion)	
Runtime	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
Memory	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
	(matrix storage)	(matrix-free)
Parallelization	very high	high
		(shared memory)
Pipelining	very high	moderate

* an iterative method can be used for MVM setup

・ロト ・回 ト ・ ヨト ・

RTC: Summary

Computing system configurations:

- 1. Intel Xeon X5650 @ 2.66GHz
- 12 cores (dual hexacore)
- Q1 2010, €5000

2. Intel Xeon E5-1650 @ 3.20GHz

• • • • • • • • • • • •

- 6 cores
- Q1 2012, €1800

System	LTAO ¹	MCAO ²
Allotted computing time	1 ms	1 ms
Computing time MVM	104 ms	72 ms
Computing time FEWHA	6.2 ms	1.5 ms
Speed-up factor	17	48

Memory MVM	2.2 Gb	2.3 Gb
Memory FEWHA	10.3 Mb	3.2 Mb
	(4 it)	(4 it)

RTC: Summary

Computing system configurations:

- 1. Intel Xeon X5650 @ 2.66GHz
- 12 cores (dual hexacore)
- Q1 2010, €5000

- 2. Intel Xeon E5-1650 @ 3.20GHz
 - 6 cores
 - Q1 2012, €1800

M. Yudytskiy (RICAM)

March 2014 16 / 18

Parallelization of MCAO operator M - tetris

Summary and Outlook

Summary

- FEWHA: light-weight versatile method for MCAO/LTAO/MOAO
- Superior quality
- Fast and compact:
- MCAO: 1.5 ms on off-the-shelf hardware

<u>Outlook</u>

- · Study of algorithm behavior: more simulations and optical bench tests
- RTC on GPUs / CPU with more cores
- $\circ~$ Algorithm development \rightarrow multiscale methods, predictive schemes

< □ > < 同 > < 回 > < Ξ > < Ξ

Summary and Outlook

Summary

- FEWHA: light-weight versatile method for MCAO/LTAO/MOAO
- Superior quality
- Fast and compact:
- MCAO: 1.5 ms on off-the-shelf hardware

<u>Outlook</u>

- · Study of algorithm behavior: more simulations and optical bench tests
- RTC on GPUs / CPU with more cores
- $\circ~$ Algorithm development \rightarrow multiscale methods, predictive schemes

Thank you for your attention!

イロト イヨト イヨト イヨ