Fourier-Based Predictive AO Schemes for Tomographic AO systems

S. Mark Ammons
Lawrence Livermore National Laboratory

March 27, 2014

Thanks to:
Lisa Poyneer
Alex Rudy
Benoit Neichel
Andrés Guesalaga
Angela Cortes

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Document Release numbers: LLNL-PRES-637075
Outline

1. The mechanics of Fourier predictive control
2. Implementing multi-layer predictive control
3. Extending Fourier predictive control to tomographic systems: Simulations
4. Application to GEMS telemetry
We will Implement Predictive Control on the Upgraded Shane AO System

◆ Project funded by the University of California Office of the President

◆ Goals:

◆ Develop LQG tomographic predictive control for MCAO and MOAO systems

◆ Implement single-conjugate predictive control on the upgraded Shane LGS AO system at Lick Observatory
Closed-Loop Kalman Filters Require a State Space Model of the Turbulence

Optimal control schemes use a model:

• We need a model of both the control system and the operating conditions (e.g. noise level and atmosphere)

• For best performance, we need to be “data-driven” and use actual WFS telemetry to populate our model

 • Getting wind velocity a little wrong is OK
 • Getting wind direction a lot wrong is very bad
• Predictive control uses the state space model to “evolve” the measurements a few milliseconds into the future, eliminating time delay error

• Most successful in high-wind or low S/N (low frame rate) environments, when time delay error becomes important
ShaneAO: Adaptive Optics System at the Shane 3-meter Telescope (LGS mode, new fiber laser)

- ShaneAO is a diffraction-limited imager, spectrograph, and polarimeter for the visible and near-infrared science bands.
Shane AO will deliver improved Strehl over existing Lick system.

Strehl vs Wavelength

LGS mode, new fiber laser

Airy core forming

Wavelength, nm

Strehl

2014 Tomography Workshop
ShaneAO Instrument Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector sampling</td>
<td>0.035 arcsec/pixel</td>
</tr>
<tr>
<td>Field of view</td>
<td>20 arcsec square</td>
</tr>
<tr>
<td>Science detector: Hawaii2RG</td>
<td>Hawaii2RG</td>
</tr>
<tr>
<td>Science wavelength coverage: 0.7 to 2.2 microns</td>
<td>0.7 to 2.2 microns</td>
</tr>
<tr>
<td>Spectral resolution</td>
<td>R = 500</td>
</tr>
<tr>
<td>Slit width: 0.1 arcseconds</td>
<td>0.1 arcsec</td>
</tr>
<tr>
<td>Slit decker: 10 arcseconds (?)</td>
<td>10 arcsec</td>
</tr>
<tr>
<td>Slit angle on sky</td>
<td>adjustable 0-360°</td>
</tr>
<tr>
<td>Long-exposure stability</td>
<td>hold to the diffraction-limit for one hour</td>
</tr>
<tr>
<td></td>
<td>hold to ½ slit width for 4 hours</td>
</tr>
<tr>
<td>Polarimetry mode:</td>
<td>polarization analyzer and variable angle waveplate</td>
</tr>
<tr>
<td>Delta magnitude within seeing disk</td>
<td>Dm_K = 10</td>
</tr>
<tr>
<td>Minimum brightness tip/tilt star:</td>
<td>m_V = 18</td>
</tr>
<tr>
<td>Tip/tilt star selection field</td>
<td>120 arcsec</td>
</tr>
<tr>
<td>Sky coverage</td>
<td>~90% LGS mode</td>
</tr>
<tr>
<td>Minimum brightness natural guide star</td>
<td>m_V = 13</td>
</tr>
<tr>
<td>Camera readout modes</td>
<td>Correlated double-sampling (CDS)</td>
</tr>
<tr>
<td></td>
<td>up the ramp (UTR)</td>
</tr>
<tr>
<td></td>
<td>sub-frame region of interest (ROI)</td>
</tr>
<tr>
<td></td>
<td>quick take</td>
</tr>
<tr>
<td>Exposure support:</td>
<td>Multiple frame co-added</td>
</tr>
<tr>
<td></td>
<td>automated nod and expose coordinated with telescope (snap-i-diff, box-4, box-5)</td>
</tr>
<tr>
<td></td>
<td>automated darks sequence based of history of science exposures</td>
</tr>
<tr>
<td>Observations support</td>
<td>automatic data logging</td>
</tr>
<tr>
<td></td>
<td>automatic data archiving</td>
</tr>
</tbody>
</table>

2014 Tomography Workshop
ShaneAO is being Assembled with First Light in Fall 2013

Deformable Mirror

Wavefront Sensor

Science Detector

2014 Tomography Workshop
Use General Kalman Solution for Arbitrary Time Delays

\[
C(z) = \left(\frac{Q^{-1} \sum_{k=0}^{L} \frac{p_{L+1,k}}{1 - \alpha_k z^{-1} \left[-\Delta + (1 + \Delta) \alpha_k\right]} \left[1 + z^{-1} Q^{-1} \sum_{k=0}^{L} p_{L+1,k} \left[(1 - \Delta) + \Delta \alpha_k\right]\right]}{1 + z^{-1} Q^{-1} \sum_{k=0}^{L} p_{L+1,k} \left[(1 - \Delta) + \Delta \alpha_k\right]} \right)^{-1}.
\]

(34)

1 fr < Delay < 2 fr

Delay < 1 frame

\[
C(z) = \left(\frac{Q^{-1} \sum_{k=0}^{L} \frac{p_{L+1,k} \alpha_k}{1 - \alpha_k z^{-1} \left[(1 - \Delta) + \Delta \alpha_k\right]} \left[1 - \alpha_k z^{-1} \left(1 - \Delta + \Delta z^{-1}\right) \left(1 - \Delta + \Delta \alpha_k\right)\right]}{1 - \alpha_k z^{-1} \left(1 - \Delta + \Delta z^{-1}\right) \left(1 - \Delta + \Delta \alpha_k\right)} \right)^{-1}.
\]

(37)

Poyneer et al. 2008
Application to GEMS Telemetry

- Method #1: Apply wind identification step to pseudo open-loop slopes provided by A. Guesalaga and B. Neichel

- Method #2:
 1. Perform tomographic reconstruction on pseudo open-loop slopes to estimate true volumetric phase
 2. Apply wind identification step to layers of different atmospheric heights

We expect that wind layers separated by height will have different temporal properties.
Tomographic Reconstruction + Wind Identification Cleanly Separates Layers

The temporal properties of layers are cleanly distinguished by a tomographic reconstruction (using only geometric information!).

Pseudo Open-Loop slopes

Tomographically-reconstructed ground layer

Tomographically-reconstructed 4.5 km layer
Solution for Closed-Loop MCAO with Tomography

- Residual WFS Slopes
 - Fourier Reconstructor
 - Residual WFS Phase
 - Tomographic Estimator
 - Residual Layer Phase
 - Layer 1 integrator
 - Layer 2 integrator
 - Layer 3 integrator
 - Layer 1 Kalman
 - Layer 2 Kalman
 - Layer 3 Kalman
 - SOL phase
 - Found peaks
 - Solve Riccati Eqs
 - DMs Layer Phase
 - DM Projections
Advantages over Filtering WFS Slopes

◆ Wind Identification performed on pseudo open-loop phase at each layer, not wavefront sensor phase

◆ Approach makes physical sense – uncorrelated layers are likely to be at different altitudes

◆ Apply a prior that wind vectors in layers separated by geometric tomography should be uncorrelated.

◆ If a wind peak is seen with a certain vector that corresponds to a stronger detection in another layer, reject those frequencies.
We simulate an 10-m MCAO system with tomography:

- 3-10 LGSs over 100” diameter
- 8-layer Mauna Kea atmospheric model
- Reconstruction over 3 layers (0, 5, 10 km)
- Wind velocities randomized, 0-15 m/s
- 200 realizations of 4 second length, 1 kHz operation
- 3 DMs at reconstructed altitudes (30x30 up to 45x45)
Minimum Variance Back-Projection Tomography (Gavel 2004)

\[
\begin{align*}
\mathbf{v}_{k+1} &= \mathbf{v}_k + \Delta \mathbf{v}_k \\
\Delta \mathbf{v}_k &= a \mathbf{C} \mathbf{e}_k \\
\mathbf{e}_k &= \mathbf{y} - (\mathbf{A} \mathbf{P} \mathbf{A}^T + \mathbf{N}) \mathbf{v}_k \\
x &= \mathbf{P} \mathbf{A}^T \mathbf{v}_\infty \\
x &= \mathbf{P} \mathbf{A}^T (\mathbf{A} \mathbf{P} \mathbf{A} + \mathbf{N})^{-1} \mathbf{y}
\end{align*}
\]

- 5 iterations per time step, alternating pre-conditioned conjugate gradient / linear steps, warm restart
Tomographic Error Mixes Temporal Signals between Altitudes

Layer 1: 0 km

Layer 2: 5 km

Layer 3: 10 km

10 m/s

DC

2014 Tomography Workshop
Results: Kalman Filtering Reduces Delay Error by 3x

- 500 Hz frame rate, 2 step delay, $r_{0,500} = 15$ cm
Results: Kalman Filtering Reduces Delay Error by 3x

- 500 Hz frame rate, 2 step delay, $r_{0,500} = 15$ cm
Correction Scheme – Shift & Average Multi-sampled Voxels

\[\Phi'(r, t') = \frac{1}{n' - n_0 + 1} \sum_{n=n_0}^{n'} \Phi(r - c(n' - n)v, cn) \]

- Wind Identification and Estimation not simulated
- For each layer, replace voxels in downwind direction with shifted and averaged voxels from tomographic time history
- Only shift voxels originating in multi-sampled region, where height can be effectively determined
- Wind vectors assumed to be known perfectly

Phase height cannot be constrained in sparsely-sampled regions from tomography alone!
Prediction Improves RMS Errors on Layer Estimates

- After 1 second, on average, the layer estimates improve 3-13%
- Downwind regions improve 10-30%, especially for high altitude layers
Prediction Improves RMS Errors on Layer Estimates

- With downwind layers better determined, the tomographic error improves beyond the radius of the guide stars

Maps of Improvement in Layer Estimates

Tomographic Error vs. Field Radius

Without shift & average

With shift & average

LGS radius

2014 Tomography Workshop
Goal: Test Fourier-Based Predictive Tomography on UCSC Testbed

- Up to 8 wavefront guide stars and 4 tip/tilt stars
- 10,000 DOF per DM (100x100 subaperture Hartmann sensors)
- Up to 3 DMs (MCAO) or 1 DM and open loop WFS path (MOAO)
- 5 Hz sample & control rate
- Moving phase plates (wind)
- Moving LGS fibers in z to simulate LGS elongation, or laser pulse
1. Fourier Predictive Control is a computationally efficient method of reducing delay errors

2. In simulation, shifting and averaging predictive control provides 3-13% benefits in tomographic wavefront estimation quality at all layers

3. From GEMS telemetry: Adding a tomographic reconstruction to pseudo-open loop slopes, using geometric information only, cleanly separates the temporal properties of the wind flow.

4. In an MCAO simulation, predictive control reduces time lag errors by 3x for a realistic implementation (500 Hz, 2 step delay)