Mixed LGS/NGS tomographic real-time control using CANARY

AKA Tomography: Not just simulation/modelling

Alastair Basden (Durham University) Tomography workshop Edinburgh (UK), 26th March 2014

Contents

- CANARY tomography
- WFS timeline
- RTCS solutions
- Telemetry
- Modelling

CANARY RTCS & Tomography

- DARC RTCS (free, open source)
- Single control matrix from Slopes vector to MOAO DM commands
 - Usually produced by L&A
 - Simulation version also used
 - And LQG (~6 matrices), Neural networks
- Complexities arise from multiple WFS
 - Hardware interfacing, synchronisation, etc
 - An issue for tomographic AO systems
 - Particularly with mixed LGS/NGS

CANARY WFS timeline

- 2010: 4 NGS
- 2011: 1 LGS
- 2012: 4 NGS+1 LGS
- 2013: 4 NGS+4 LGS
- 2014: 4 NGS+4 LGS+2 Figure Sensors
- 2015: 4 NGS+4 HOLGS+2 Figure Sensors
- 2015: 4 NGS+4 LGS+2 FS+1 NaLGS
- 2016: + 1 HONGS + CAWS

WFS interfacing

- 4 NGS
 - ESO SPARTA-Lite system (customised)
 - sFPDP (customised Andor iXon)
 - Processing of pixels \rightarrow DM upon arrival
 - Rather than waiting for full frame to begin processing
 - Issues with infrequent dropped frames
 - Either incomplete, or shifted
 - Detectable at the end of frame/beginning of next
 - By which time, most processing has been done!

Dropped frame handling

- Upon detection, error message passed along processing pipeline
 - DM is frozen
 - States (integrators, etc) are reset to previous state
 - Certain glitches cause 2 frames of error
- WFSs synchronised by always using most recent frame
 - Complete missing frames also detected

LGS commissioning

- sCMOS camera
 - cameraLink
- Lincoln Labs gated CCD/Scimeasure controller
 sFPDP
- Andor iXon

4 NGS + 1 LGS

- All Andors, sFPDP
 - No additional complications

4 NGS + 4 LGS

- 4x Andor
- 1x Scimeasure (4 LGS imaged onto same detector)
 - Electronically gated for Rayleigh range gate
- All sFPDP (custom electronics)
- Trigger timings adjusted such that last pixels for each camera arrive at the RTCS at same time
 - DM is updated using latest information available
 - Removes different camera electronics effects

+2 Figure Sensors

- For pseudo-open-loop calculations
 - Measure the DM surfaces
- And non-linear DM calibrations
- Input into RTCS, at same frame rate
- Gig-E vision a frame-driven protocol
 - Reverse engineered to give pixel stream access
 - Allowing processing of sub-apertures as soon as they have arrived
- To be interfaced alongside the 5 sFPDP cameras
- Trigger pulses (start of frame) to be adjusted such that last pixel into RTC arrives at same time for each camera
- Dropped packets sometimes seen
 - As before, error flag propagated down pipeline and state frozen

$\mathsf{LGS} \to \mathsf{HOLGS}$

- Using OCAM2
 - 240x240 pixels
 - Time-gated
 - EMCCD
 - CameraLink
 - Full frame access already tested with DARC
 - Access to pixel stream possible by modification of camera waveforms (extra V-Sync)
 - Integration with sFPDP and GigE cameras required
 - 3 different types of WFS cameras

+1 NaLGS

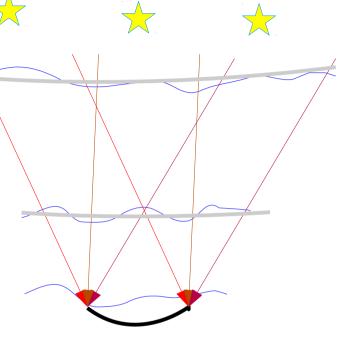
- Launched 40m off-axis
 - Investigations of elongation in E-ELT sub-pupil
- 2015
 - Probably an OCAM2, camera Link (or possibly 10G ethernet)
 - No new additional complexities in interface
- Also a Na profiling camera
 - ~1-200m off-axis
 - Also DARC
 - Synchronised with main RTCS via fibre or line-of-sight link

WHT

CHOUGH

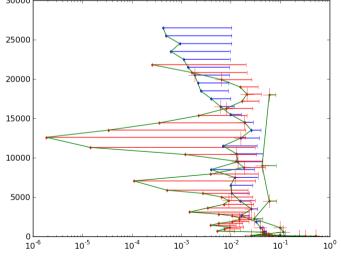
- +1 HOWFS +1 CAWS
- But not tomographic...

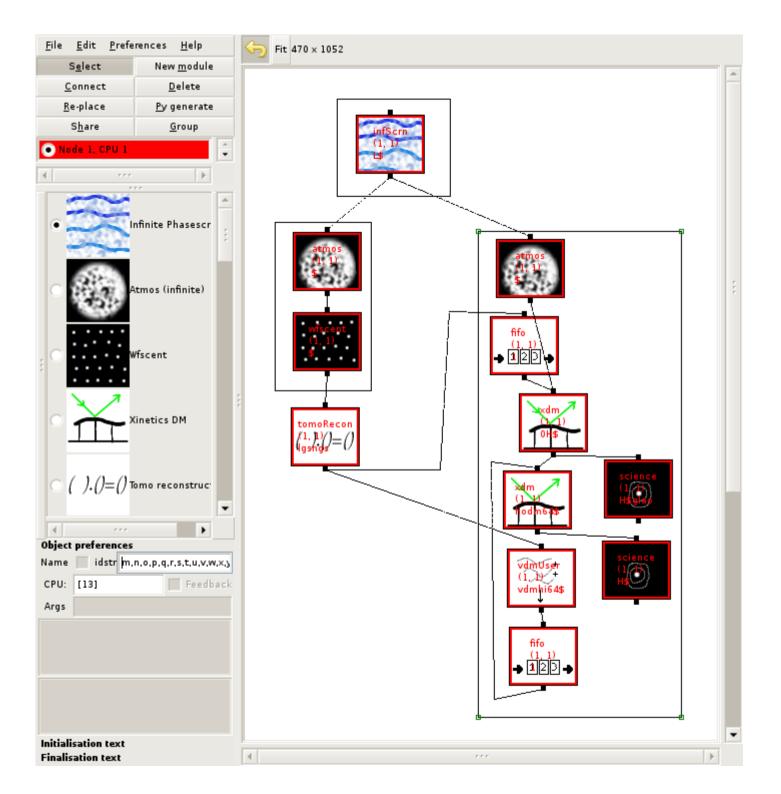
DRAGON


- Wide-field AO real-time test-bench
 - 4 NGS, 4 LGS
 - 4x GigE Vision Bobcat cameras (NGS)
 - 1x 10GigE Vision EVT camera (LGS)
 - Low number of packet drops
 - Until some critical frame rate
 - Under investigation
 - Reverse engineered pixel stream access

RTCS telemetry

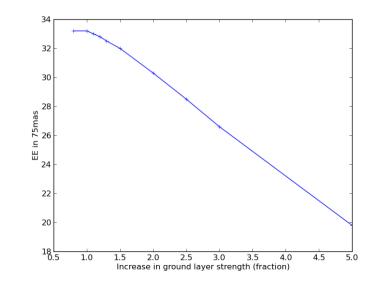
- Live access to RTCS pipeline data
 - Every frame of:
 - Pixels, *slopes*, phase, DM demands
 - (and others such as internal state, sub-ap positions, correlations, etc)
 - Linked to parameter state of RTCS


Tomographic simulation


- Durham AO Simulation Platform (DASP)
- Monte-Carlo end-to-end tool
- Tomography via virtual DMs
 - Produce interaction matrices (response function)
 - Inversion (MAP/LSQ)
 - Approximations for phase/noise covariances
- For CANARY:
 - Virtual DMs placed at heights corresponding to measured CN2 profile
 - Theoretical NGS/LGS positions used
 - Theoretical reconstructor gives slightly worse performance than L&A
 - But only a very quick testing carried out

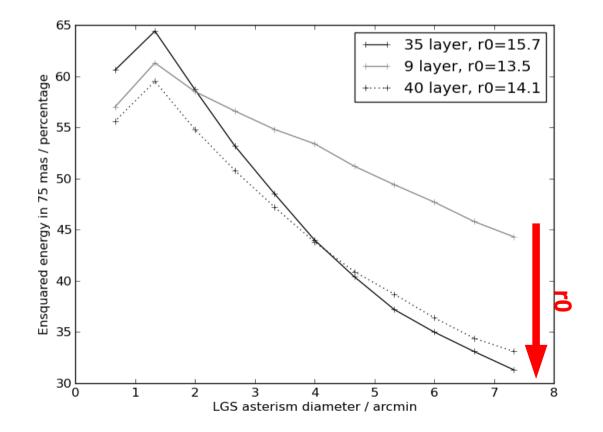
ELT-scale modelling

- Large number of slopes (~100k, ~11 WFS)
- Large number of virtual phase reconstruction points
 - Selectively choose which atmospheric layers to reconstruct
 - Reduce phase pitch depending on Cn2
- Then becomes manageable to compute reconstruction
 matrix
- For MOAO:
 - Reconstruction + projection
 - Reconstruction and projection

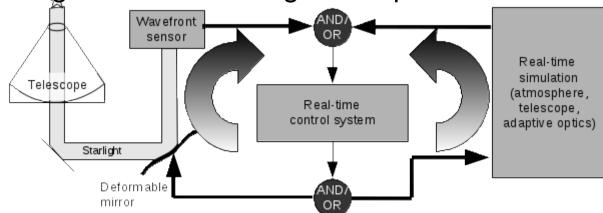


Mixed LGS+NGS

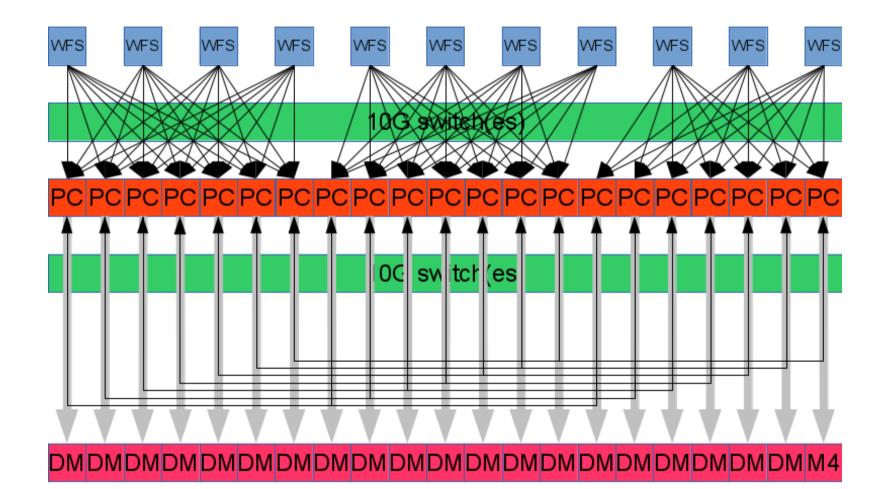
- Compute reconstruction of LGS+NGS with mean slopes removed
 - Removing mean slopes is a matrix operation
- Compute reconstruction of NGS with mean slopes
 - Averaging mean slopes is a matrix operation
- Add together to get final reconstructor


Some EAGLE/MOSAIC results

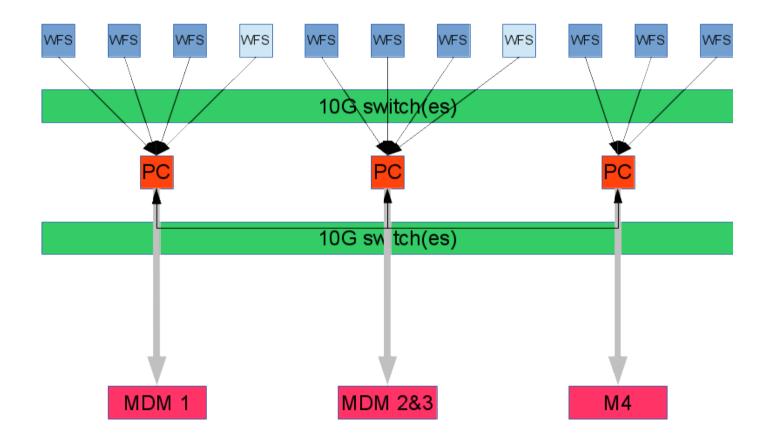
- Studies of DMs
 - DM order, faulty actuators, mis-alignments
- Optimal LGS asterism diameters
- NGS asterisms and photon fluxes, SNR
- Ground layer strength
 - Unknown for ELT!


Performance v Atmospheres

- Performance v. dependent on Cn2 profile
 - Not just r0/L0
 - Not just number of layers
 - Increased dependence for wider fields


Real-time simulation

- Merging of simulation and RTC
 - Simulation of selected physical components
 - e.g. missing DMs or WFSs
 - Or the entire system
 - Allows RTCS to operate off-sky/off-bench
 - Ideal for pre-commissioning, integration etc
- Basic implementation for CANARY
 - More work to follow
 - To allow full testing of tools/algorithms etc during development



Tomographic ELT RTCS designs

• For EAGLE/MOSAIC:

...for MAORY

Conclusions

- Thought required when mixing WFSs
- For ELT, performance of wide-field AO will vary significantly depending on atmospheric conditions
 - Simple seeing monitors no longer sufficient
 - Wide range of conditions must be modelled
 - Ground layer is somewhat unknown