

Raven MOAO science and technology demonstrator for Subaru 8m telescope

http://web.uvic.ca/~ravenmoa/

Kate Jackson and Carlos M. Correia on behalf of the Raven team

Adaptive Optics Tomography Workshop Edinburgh, 25-26 March 2014

MOAO rationale

- Why open-loop AO?

• TLR

- Science and technological drivers
- System design and performance budgeting
- Wide-field Tomography and real-time implementation (Kate Jackson's PhD)
 - Spatio-angular tomography
 - Temporal prediction
 - Sky-coverage improvement

Multi-object adaptive optics: rationale

• Increase the corrected field to several arcmins \rightarrow many DMs to overcome FoV vs. thickness rule

• MOAO

- -Tomographic reconstruction as in MCAO
- -Multiple science pick-off arms are placed on the scientifically interesting targets in the field
- -Each science channel contains a DM that makes the optimal turbulence correction in its science direction
- Open-loop AO (WFS placed in front of the DM, unlike MCAO)
- -Calibration becomes a challenge
 - Misregistrations, field-depedent distortions, irregular sensitivity, DM non-linearity, hysteresis

FoV vs. thickness rule

What is the FoV vs t. rule? • It is an approximation of the maximum spatial scale that can be corrected at a given distance from a DM...

• A DM can correct all the spatial scale it can fit at its height of conjugation...

• ...and only a limited spatial scale at a certain distance...

 ...whose linearly deteriorate with a coefficient given by the FoV

4 Roberto Ragazzoni AO4ELT, 2009 10 20 k [m⁻⁴] 18 հ [ևա] Ծ

10

 $\frac{20}{k [m^{-1}]}$

30

· al …

Raven in a nutshell...

- 1st Multi-Object Adaptive Optics (MOAO) technical and science demonstrator installed on an 8 m class telescope
- Partnership
 - Subaru Telescope
 - National Astronomical Observatory of Japan (NAOJ),
 - Herzberg Institute of Astrophysics
 - University Victoria
 - Tohoku University
- Project start: 2010
- On-sky ~mid 2014
- Precursor of ELT's NIR multi-IFU

Science drivers

Raven science case, v1.0, (2012)

- Finding first stars
- High redshift gravitationally lensed galaxies
- Kinematics of magnified galaxies in cluster fields
 - Kinematic galaxy asymmetries
 - The stellar population of Maffei 1
 - **Proplyds in the Orion and Rosette nebulae**
 - **Brown dwarfs**

Science case overview

- As a science demonstrator → designed to maximize sky coverage (given the limitations of NGS tomography) and deliver performance comparable to AO188.
- Sky coverage has been increased by:
 - 1 on-axis LGS
 - Large 3.5' FOR
 - Relatively large subapertures (10x10 OL WFSs effectively collect light from 0.8x0.8m2) → an acceptable loss in AO correction because of this choice.
 - Large free spectral range and high throughput of the OL WFSs (450 nm < λ < 850 nm).
 - The relatively large pixel size of the OL WFSs (0.4"/pixel).
 - The adoption of correlation centroiding (works with spots at a lower S/N).
 - The adoption of LQG optimal control schemes (predictive control allows the loops to run slower allowing for longer integration times).
- Still, sky coverage is relatively low compared to LGS AO systems ~ few %.
- 2 NGS brighter than 14 required for little loss in performance (down to R < 15 with some loss in performance).

System overview

Parameter	Requirement	
AO System	MOAO operation with tomographic reconstructor	
Calibration System	Capable of testing MOAO during daytime and in lab	
Science Instrument	Capable of feeding IRCS in imaging, grism and echelle modes	
Science spectral range	0.9 - 4 microns	
# of science channels	2, 11x11 DMs	
# of WFS	3 NGS + 1 on-axis LGS (10x10)	
Field of Regard	3.5 arcminutes diameter	
Science Field of View	4 arcseconds diameter per science pick-off	
Delivered EE	> 30% in 140mas in H-band for r0 = 15 cm	
Throughput	80% of AO188	
Image rotation	Ability to align each source to the IRCS slit	
Zenith angle	< 60 degrees	
WFS limiting mag	R < 14 (goal of R < 15)	

Functional block diagram

Functional optical block diagram of Raven.

Error budget

Term	3 NGS (nm)	3NGS +LGS (nm)
Tip/tilt removed Tomography (asterism + atm)	175	105
WFS Sampling $-\sigma 2=0.25(d/r0)5/3$	155	145
DM Fitting - σ2=0.1(d/r0)5/3	103	112
WFS Pixel sampling (tip/tilt removed)	72	62
WFS Noise (m=12; fs=500 Hz) (tip/tilt removed)	54	83
WFS Noise (m=14; fs=180 Hz) (tip/tilt removed)	95	96
Total (m=12)	271	236
Total (m=14)	280	241

Raven snapshot

Raven snapshot

All-on-one equation...

SDM commands \leftrightarrow WFS measurements

Calibration

Model-based (fully, hybrid model/data)

Beating down angular anisoplanatism

- Off-axis NGS-SCAO
 - Measure in direction $d\alpha$
 - Correct in direction $d\beta$
- Follow on Whiteley et al, JOSA-A, 1998
 - Solution involves Spatio-angular covariance matrices
 - Known analytically

$$\mathcal{E} \{ \phi_eta | s_lpha \} riangleq \Sigma_{(\phi_eta, s_lpha)} \Sigma_{s_lpha}^{-1} s_lpha = \widehat{\phi}_eta$$

- Post-processing cov matrices reveals atmospheric parameters: Cn², r0, etc
- Open-loop allows for directly register such matrices from data
 - Data-driven (self-calibrating) AO system

Tomographic reconstruction

(static, predictive, model-based/hybrid)

- Pupil-plane (spatio-angular) -MMSE
- $\mathcal{E} \{ oldsymbol{\phi}_eta | oldsymbol{s}_lpha \} riangleq \Sigma_{(\phi_eta, oldsymbol{s}_lpha)} \Sigma_{oldsymbol{s}_lpha}^{-1} oldsymbol{s}_lpha = \widehat{oldsymbol{\phi}}_oldsymbol{eta}$ Explicit -MV $\widehat{oldsymbol{\phi}}_{oldsymbol{eta}} = \mathrm{P}_{oldsymbol{eta}} \mathrm{E} s_{oldsymbol{lpha}}$ $= \left\{ \mathrm{P}_{oldsymbol{eta}} \left\langle arphi arphi^{\mathsf{T}}
 ight
 angle \mathrm{P}_{oldsymbol{lpha}}^{\mathsf{T}} \Gamma^{\mathsf{T}} \left(\Gamma \mathrm{P}_{oldsymbol{lpha}} \left\langle arphi arphi^{\mathsf{T}}
 ight
 angle \mathrm{P}_{oldsymbol{lpha}}^{\mathsf{T}} \Gamma^{\mathsf{T}} + \left\langle \eta \eta^{\mathsf{T}}
 ight
 angle
 ight)^{-1} s_{oldsymbol{lpha}} s_{oldsymbol{lpha}}$
- Focus is now #GS instead #layers
- Part of reconstructor from data

Embed temporal prediction

$$\widehat{\phi}_{eta_{j,k+1}} = \mathbf{P}_{eta_{j}} \mathcal{P}_{!} \mathbf{E} oldsymbol{s}_{oldsymbol{lpha}} \qquad \qquad \widehat{oldsymbol{\phi}}_{eta_{j,k+1}} = \mathbf{P}_{eta_{j}} \mathcal{P}[\widehat{oldsymbol{arphi}}_{k}, \widehat{oldsymbol{arphi}}_{k-1}, \cdots, \widehat{oldsymbol{arphi}}_{k-n}]$$

Predictive models

Increase in sky-coverage

- use fainter stars \rightarrow lower SNR regime
- Decrease frame-rate → Beat down temporal-lag error
- Auto-Regressive, diagonal models

$$\widehat{oldsymbol{\phi}}_{eta_{j,k+1}} = \mathbf{P}_{eta_{j}} \mathcal{P}[\widehat{oldsymbol{arphi}}_{k}, \widehat{oldsymbol{arphi}}_{k-1}, \cdots, \widehat{oldsymbol{arphi}}_{k-n}]$$

- Orders 1, 2, 3
- Assume Zernike polynomial expansion
- 1-step Spatio-Angular predictor

$$\mathcal{A}_{\tau} = \arg\min_{\mathcal{A}_{\tau}'} \left\langle \| \boldsymbol{\varphi}(t+\tau) - \mathcal{A}_{\tau}' \boldsymbol{\varphi}(t) \|_{L_{2}(\Omega)}^{2} \right\rangle$$
$$\mathcal{A}_{\tau} \triangleq \left\langle \boldsymbol{\varphi}_{k+1} \boldsymbol{\varphi}_{k}^{\mathsf{T}} \right\rangle \left\langle \boldsymbol{\varphi}_{k} \boldsymbol{\varphi}_{k}^{\mathsf{T}} \right\rangle^{-1}$$

- Use frozen-flow hypothesis
- Markovian → asynchronous WFS/DM case easily dealt with

1-step MMSE estimator

Predictive reconstruction

• Analytical temporal structure functions of predictive models (using frozen-flow hypothesis)

 \rightarrow Correia et al, Static and predictive tomographic reconstruction for wide-field multi-object adaptive optics systems, JOSAA, 31 (1), 2014

Simulation and experiment parameters

Cn2 profile

- Two layers of turbulence at 5km and 10km
- r0 = 0.155m, L0 = 25m
- Fractional r0 in simulation: 0.6,0.22,0.18
- Fractional r0 in lab:
 - 0.9, 0.055, 0.045

• OOMAO, Matlab-based E2E simulator

- https://github.com/rconan/OOMAO/
- Poster at PIE

- AR2: ~0.5 magnitudes fainter
- 1-step SA predictor: ~1 mag fainter

Correia et al, Static and predictive tomographic reconstruction for wide-field multi-object adaptive optics systems, JOSAA, 31 (1), 2014

Static vs predictive

Static vs predictive vs SA-LQG Exposure times: 120 seconds

Filter 4 ph:[8,36,19,24] Framerate = 30Hz Strehl

Science Image

Conclusions and outlook

Spatio-Angular formulation

- Natural generalization of off-axis MMSE to multiple #WFSs and #DMs
 - Fully model-based or partly data-driven
- Temporal prediction can be straightforwardly embedded
 - Can use as finely discretized Cn2 profile as wanted
 - Leads to 1 mag increase in limiting magnitude
 - RTC requirements ~3x160 slopes X 2x97 DM actuators ~47MFLOPS
 - Robustness under assessment
- 1st experimental setup of LQG formulation
 - Provides extra 1 mag in limiting magnitude
 - OL/CL extension requires multi-rate processing
 - RTC requirements increase ~2x
- Outlook
 - May 2014: First engineering night at Subaru Telescope

31