# CANARY

Tomography workshop Edinburgh, 25-26 march 2014

# CANARY

- CANARY is a technical demonstrator for MOAO
- Installed on the William Herschel Telescope (La Palma, Canaries)
- Born in 2007 as a « fast track project » for the need of the phase-A of EAGLE, a MOS proposal on the EELT
- Works on quadruplets (= 3+1) of stars
  - 3 off-axis stars for tomography
  - 1 central star for making an image and diagnostic purposes
  - 4 lasers guide stars
- First success in Sept. 2010 : MOAO demonstrated on-sky
- Recent sucessful attempts for astrophysics (merging galaxy cores)













# **CANARY** phases

| • | <ul> <li>2010 – PHASE A</li> <li>3 NGS in 2.5 arcmin diameter</li> <li>tomography + open loop</li> </ul> | $ \overset{\star}{\star} \overset{\star}{\star} \overset{\star}{\star} $ |
|---|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| • | 2012 – <b>PHASE B1</b><br>– PHASE A config +<br>– 1 Rayleigh LGS on-axis in open-loop                    | * *                                                                      |
| • | 2013 – PHASE B2                                                                                          |                                                                          |

- PHASE A +
- 4 LGS Rayleigh on a square, 23" off-axis, at 21 km altitude
- 2014 **PHASE C1** : LTAO
- 2015 PHASE C2 : 2-stage MOAO



#### **Observed** asterisms



- 8.3 < magnitudes R < 11.2
- 25" < Dist. from center < 65"
- 2.5' field of view



# **CANARY TOMOGRAPHY**

#### CANARY MOAO control algorithm

- Learn and Apply : optimal static approach (MMSE)
  - get data from turbulence
  - learn, from the wavefront sensors data, what are the best parameters for the tomographic reconstructor
  - introduce turbulence knowledge + a priori (kolmo, deviations)
  - introduce calibrated system command matrix (truth  $\rightarrow$  DM)
  - get the final static reconstructor
  - Vidal et al., « A tomography approach for MOAO », JOSA A, 27, 253
- Temporal optimization : optimal temporal filtering
  - optimize the gain of an integrating filter versus
    - turbulence speed
    - noise propagated after tomographic reconstruction

#### MMSE tomographic reconstructor

- MMSE = minimum mean-square error ٠
  - R. measur between
  - phase – and
  - on average
  - $\langle | phase R . measur |^2 \rangle$ Minimizes
- ٠

•

Expression is  $R = \langle \overrightarrow{phase}, \overrightarrow{measurt} \rangle . \langle \overrightarrow{measur}, \overrightarrow{measurt} \rangle^{-1}$ 

contains all information about how measurements are related to phase

contains all information about what measurements are made of

- noise
- geometry
- turbulence profile
- LGS, NGS ...

#### Today's method (Learn & Apply)

• Determination of covariance model

**INPUTS** 

Based on the WFS data acquired by the instrument itself



**OUTPUTS** 

# **CANARY ON-SKY RESULTS**











#### The « Pluto mode »

- Originally intended to observe Pluto (that has, actually, never been observed)
- 4 LGS in open loop + 1 TT star (=pluto) in closed loop on truth sensor
- Allows to test tomography purely on LGS
- Comparison between MOAO and GLAO







# Tomography with 4L

- With, and without lasers
- ast. A47, 17/9/13 22h03,
- script 274, 275 + pluto mode
- Lasers are actually doing tomography



# Overview of results on A47, Sept 2013

- MOAO performs well
- most of the time between GLAO and SCAO
- Bad seeings : ground layer dominates
  - GLAO ≈ MOAO
- Performance fluctuates quite a lot





# **CANARY** : astrophysical result

NGC 6240 Galaxies in interaction

1 guide star 38" off-axis mR ≈ 13

![](_page_17_Figure_3.jpeg)

![](_page_18_Figure_0.jpeg)

# **TOMOGRAPHIC ERROR**

### Vertical error distribution

- Common wrong ideas :
  - MMSE tomographic reconstructor designed for 2 layers compensation will perfectly compensate the 2 layers
  - MMSE tomographic reconstructor will perfectly compensate the ground layer anyway (because it's easy ?)
  - If all WFS see the same pattern  $\rightarrow$  ground layer only  $\rightarrow$  perfect compensation
- Error superimposition principle

![](_page_20_Figure_6.jpeg)

Vertical error distribution

![](_page_21_Figure_1.jpeg)

• Summing profiles is allowed (encouraged ?) :

#### Vertical error distribution (VED)

• Summing layers of unitary strengh strengh ( $C_n^2=1$ ,  $r_0=D$ , seeing=1"...)

![](_page_22_Figure_2.jpeg)

note:  $\sum_{h} r_0^{-5/3}(h) \, \varepsilon^2(h)$  can be more convenient

#### Building the VED

- Simulate covariance matrices of single layers, at each altitude
  - every  $\approx$  500 m ?
- with unitary  $C_n^2(h)$
- derive the error on each  $\langle \overrightarrow{err}.\overrightarrow{err^{t}} \rangle = \langle \overrightarrow{phase}, \overrightarrow{phase}, \neg \langle \overrightarrow{phase}, \overrightarrow{meas^{t}} \rangle.R^{t}$  $- R.\langle \overrightarrow{phase}, \overrightarrow{meas^{t}} \rangle^{t} + R.\langle \overrightarrow{meas}, \overrightarrow{meas^{t}} \rangle.R^{t}$
- $\epsilon^2(h)$  allows to
  - compute the tomographic error
  - anticipate the impact of unexpected layers
  - assess the impact of altitude change

![](_page_23_Figure_9.jpeg)

![](_page_23_Figure_10.jpeg)

#### VED example

- Same example, cont'd :
  - SCAO case : R=1 Identity matrix (grows like H<sup>5/3</sup>)
  - error on the 3 layers increase w altitude, although declared w same strengh
  - GLAO beats MOAO for 0<H<2500m</li>
  - error at ground layer is not 0 for MOAO (beware of static aberrations..)
  - « notch » holes : width is in  $(\phi_{subap}/\alpha)=2500m$  here

![](_page_24_Figure_7.jpeg)

#### VED example

- Varying the star separation :
  - Zoom on an asterism
  - « notch » holes : width is in  $(\phi_{subap}/\alpha)$
  - (Ø<sub>subap</sub>/33'')=3500m here
  - « notch » holes are present until pupils do not overlap enough (or any more ..)

![](_page_25_Figure_6.jpeg)

#### VED example

- Splitting 1 single layer in 2
  - Separated by 1500 m
  - makes ≈ no difference

![](_page_26_Figure_4.jpeg)

# VED on an EELT ?

- Telescope diameter kept constant
- Increasing the number of subapertures creates sharper
   « notch holes » in the VED → sensitivity/resolution in altitude is higher
- An increased resolution of the profile is required

![](_page_27_Figure_4.jpeg)

## Impact of multiple thin layers

- Example on a CANARY profile
- Notice how introducing small layers allow to reduce the error
- Can extra « fake » layers be inserted « in case they pop-up » ?

![](_page_28_Figure_4.jpeg)

## Impact of multiple thin layers

- Example on a CANARY profile
- Notice how introducing small layers allow to reduce the error
- Can extra « fake » layers be inserted « in case they pop-up » ?
  - yes, but ...

- you then pay most of the price on the ground layer

![](_page_29_Figure_6.jpeg)

# Impact of ground layer strengh

- Same example on the same CANARY profile
- 3 MMSE reconstructors
  - different Ground Layer strengh
- Safe tomography : protect yourself, consider doubling the layer.

![](_page_30_Figure_5.jpeg)

# Scidar data analysis

- Scidar
  - Operated by James Osborn on JKT 1 m telescope
  - many data, all night long
- Match pretty well with CANARY data
- Ground layer / low layers need adjustment
- Many « weak » layers appear/disappear all the time
- However they're not crucial to optimize the reconstructor

![](_page_31_Figure_8.jpeg)

## VED of a raw reconstructor

- Raw reconstructor is :
  - Rraw =  $\langle measur_{TS}, measur^t \rangle$ .  $\langle measur^t \rangle^{-1}$
- Built with NO knowledge on the profile at all
- Offset wrt « learned MMSE »
  - temporal convergence ? (hyper-adapted to the learning sequence)
  - lack of robustness
- Naturally immunized against 10km layers

![](_page_32_Figure_8.jpeg)

# Conclusion

- Tomography demonstrated by CANARY
- More important : simulations validated
  - provided an average ≈100 nm model error is added
- Science demonstration also done
  - although CANARY is not suited for that
- VED : new tools can help understand tomography for EELT ...