Wide-Field Adaptive Optics for ground based telescopes: First science results and new challenges

Edinburgh– 25th March 2013

Presented by B. Neichel

Outline

A brief Introduction to Adaptive Optics (AO) and Wide Field AO

GeMS: the Gemini MCAO system

Tomography & Calibrations

First science results with WFAO

New challenges

A brief Introduction to Adaptive Optics (AO) and Wide Field AO (WFAO)

atmosphere

Spatial resolution is lost...

Earth's

atmosphere

Wave-Front Sensor

atmosphere

Adaptive Optics works **close** to a **bright**guide star

Wave-Front Sensor

Anisoplanatism

High atmosphere's layers are not sensed when looking off-axis

Anisoplanatism

Anisoplanatism

High atmosphere's layers are not . sensed when looking off-axis

Solution => Combine off-axis measurements

How to combine the WFSs measurements to do the tomography ?

Many different flavors of 3D phase reconstruction: LSE, MMSE, MV, L&A, FRIM, POLC, Neuronal Network, ...

Usually done in 2 steps (1) Reconstruction ; (2) projection

How many Guide Stars are available ?

Laser Guide Star

When no guide star are available, we can create one

Laser Guide Star

Laser Guide Star

22 January 2011

First LGS constellation at Gemini South

- In summary -

Tomography for Astronomy means:

(1) Access to larger FoV(2) Access to better sky Coverage

Where the first AO systems are limited to small and bright objects, new WFAO system opens the way to a multitude of new science cases. (We'll see some nice images at the end of this talk)

BUT requires LGS

(We'll see some of the LGS issues latter in this talk)

WFAO challenges

All the ELTs are based on multi-LGS WFAO systems

Introduction to GeMS – The Gemini MCAO system

GeMS Intro.

GeMS = Gemini (South) MCAO system

GeMS = Facility instrument delivering AO corrections in the NIR, and over a 2arcmin diameter FoV

Instruments fed by GeMS

Tomography is easy, calibrations are difficult...

Tomography is easy, calibrations are difficult...

Differential aberrations between WFSs Fratricide effect Non-Kolmogorov turbulence Quasi-static aberrations

Impact of differential aberrations between WFSs

Impact of differential aberrations between WFSs

Origin of differential aberrations between WFSs?

- Registration Look-Up Table
- Static aberrations Centroiding gains
 - Laser Spots
 - Differential LGS focus
 - Non-linear effects

Origin of differential aberrations between WFSs ?

Registration Look-Up Table

- Static aberrations Centroiding gains
 - Laser Spots
 - Differential LGS focus
 - Non-linear effects

LUTs are everywhere...

LUTs are everywhere...

Ex: LGS WFS zoom mechanisms

LGSWFS LUT versus elevation / temperature

When elevation / temperature / flexure change, need to keep the registration and magnification right on each LGSWFS.

LGSWFS LUT versus elevation / temperature

LUT is built with calibrations sources moved to different LGS range.

8 mechanisms in the LGSWFS are adjusted to keep registration / magnification right.

LGSWFS LUT versus elevation / temperature

Need to be done daily when observing.

63/3000 | time=38.16s | FPS= 1, 20kB/s

No ways to check while observing, "Trust the LUT " (Can do some on-sky checks, but "science destructive")

Would require non-destructive, on-line calibration tools !

(Cf. ESO AOF ?)

Origin of differential aberrations between WFSs?

- Registration Look-Up Table
 - Static aberrations
- Centroiding gains Laser Spots
 - Differential LGS focus
 - Non-linear effects

Static tomography for NCPA

No NCPA == SR of 50 $(\pm 10)\%$ (H-band) in the field.

Goal: find slope offsets that would provide the best image quality in the science path. Static tomography for NCPA -

No NCPA == SR of 50 $(\pm 10)\%$ (H-band) in the field.

Method 2, 1 step: Tomographic Phase Diversity

[Rigaut et al. AO4ELT2 Gratadour et al. AO4ELT2] Static tomography for NCPA

No NCPA == SR of 50 $(\pm 10)\%$ (H-band) in the field.

Goal: find slope offsets that would provide the best image quality in the science path.

=> Static differential aberrations between WFS should be absorbed by NCPA.

Origin of differential aberrations between WFSs?

- Registration Look-Up Table
 - Static aberrations
- Centroiding gains Laser Spots
 - Differential LGS focus
 - Non-linear effects

Laser related

Quad-cells transfer function & centroid gain

Centroid gain depends on spot size.

Spot size changes with seeing / sodium layer characteristics

Laser related

Quad-cells transfer function & centroid gain

Centroid gain depends on spot size.

Spot size changes with seeing / sodium layer characteristics

An error on the centroid gains can produce:

- Wrong loop gain in CL (minor effect) (What in OL ?)
- Wrong NCPA (major effect if NCPA are large)
- Differential aberrations between the WFSs and wrong tomography

=> Centroid gains need to be calibrated on-line

Quad-cells transfer function & centroid gain => Centroid gains need to be calibrated on-line

Method: Apply a "sine wave" on the DM at a given frequency and do a lock-in detection.

- Insensitive to vibrations
- Not (really) seen by the WFSs, so not corrected
- Small amplitude required (20nm rms)
- Would create satellite spot on the images, but lost in noise.

Seems to be working, but no direct way to cross-check results

Origin of differential aberrations between WFSs?

- Registration Look-Up Table
 - Static aberrations
- Centroiding gains Laser Spots
 - Differential LGS focus
 - Non-linear effects

Differential focus introduced by Na-layer transversal variations

Differential focus introduced by Na-layer transversal variations

Origin of differential aberrations between WFSs?

- Registration Look-Up Table
 - Static aberrations
- Centroiding gains Laser Spots
 - Differential LGS focus
 - Non-linear effects

Non-linear effects

Lasers not properly centered

LGS spot Clipping ?

Field stop Vignetting ?

Tomography is easy, calibrations are difficult...

Differential aberrations between WFSs Fratricide effect Non-Kolmogorov turbulence Quasi-static aberrations

Fratricide Effect

Fratricide Effect

224 subapertures lost (~20% of the subapertures !)

Fratricide Effect

Impact of "Fratricide Leaks"

Tomography is easy, calibrations are difficult...

Differential aberrations between WFSs Fratricide effect Non-Kolmogorov turbulence Quasi-static aberrations

Covariance matrix

[Cortes et al. – MNRAS – 2012]

Some examples of on-skv data:

Limitations of the method: presence of strong dome seeing

Limitations of the method: presence of strong dome seeing

Variance of valid subapertures, X (top); Y (bottom)

[Guesalaga et al. AO4ELT3]

Limitations of the method: presence of strong dome seeing

Variance of valid subapertures, X (top); Y (bottom)

[Guesalaga et al. AO4ELT3]

Non-Kolmogorov (or non stationary) turbulence does exists !

What is the impact on tomographic performance?

However:

- Wind speed and direction can be predicted and measured.
- Frozen Flow assumption holds for long enough for predictive reconstructors.
 [Guesalaga et al. – MNRAS – 2014]

GeMS's Tomography Calibrations & Limitations

Tomography is easy, calibrations are difficult...

Differential aberrations between WFSs Fratricide effect Non-Kolmogorov turbulence Quasi-static aberrations

Quasi-static aberrations

Science with MCAO

WFAO is opening new opportunities for a large range of science cases

<u>3 Fields:</u> OMC1 – North OMC1 – Center OMC1 – South-East

Filters:

Mol. Hydrogen (H2) - 2.122 μm (orange) [Fe II] - 1.644 μm (blue) Ks continuum - 2.093 μm (white)

Exposure Time per field: H2 = 12min [Fe II] = 10min Ks continuum = 10min

<<u>FWHM> :</u> H2 = 90mas [Fe II] = 100mas Ks continuum = 90mas

Natural seeing: 0.6" to 1.1" @ 550nm

A&A 417, L5–L9 (2004) DOI: 10.1051/0004-6361:20040030 © ESO 2004

VLT/NACO infrared adaptive optics images of small scale structures in OMC1*

F. Lacombe¹, E. Gendron¹, D. Rouan¹, Y. Clénet¹, D. Field², J. L. Lemaire^{3,4}, M. Gustafsson², A.-M. Lagrange⁵, D. Mouillet⁵, G. Rousset⁶, T. Fusco⁶, L. Rousset-Rouvière⁶, B. Servan^{7,†}, C. Marlot¹, and P. Feautrier⁵

A&A 417, L5–L9 (2004) DOI: 10.1051/0004-6361:20040030 © ESO 2004

VLT/NACO infrared adaptive optics images of small scale structures in OMC1*

F. Lacombe¹, E. Gendron¹, D. Rouan¹, Y. Clénet¹, D. Field², J. L. Lemaire^{3,4}, M. Gustafsson², A.-M. Lagrange⁵, D. Mouillet⁵, G. Rousset⁶, T. Fusco⁶, L. Rousset-Rouvière⁶, B. Servan^{7,†}, C. Marlot¹, and P. Feautrier⁵

GeMS

Astronomy Astrophysics

VLT/NACO infrared adaptive optics images of small scale structures in OMC1*

F. Lacombe¹, E. Gendron¹, D. Rouan¹, Y. Clénet¹, D. Field², J. L. Lemaire^{3,4}, M. Gustafsson², A.-M. Lagrange⁵, D. Mouillet⁵, G. Rousset⁶, T. Fusco⁶, L. Rousset-Rouvière⁶, B. Servan^{7,†}, C. Marlot¹, and P. Feautrier⁵

ISOCHRONES from Dotter et al. 2007 WEBsite Z=0.001 age=10Gyrs

The Vela pulsar and its likely counter-jet in the K_s band *

D. Zyuzin,¹[†] Yu. Shibanov,^{1,2} R. E. Mennickent,³ A. Danilenko¹ and S. Zharikov⁴ ¹Ioffe Physical Technical Institute, Politekhnicheskaya 26, St. Petersburg, 194021, Russia ²St. Petersburg State Polytechnical Univ., Politekhnicheskaya 29, St. Petersburg, 195251, Russia ⁴Department of Astronomy, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile ⁴Observatorio Astronómico Nacional SPM, Instituto de Astronomía, UNAM, Ensenada, BC, Mexico

Abell 780 – z ~ 0.1

SV403 R. Carrasco & I. Trujillo Filter = Ks 1h on-source <FWHM> = 77mas 2 NGS only

Ε

New challenges for WFAO

Current WFAO science instruments:

SOAR Adaptive Module

Current WFAO demonstrators:

Near future WFAO science instruments:

AO Facility 2015 WFAO challenges

All the ELTs are based on multi-LGS WFAO systems

WFAO challenges

All the ELTs are based on multi-LGS WFAO systems

Conclusions

WFAO is opening new opportunities for a large range of science cases

Tomographic phase diversity:

- The classical PD approach can be extended to process data over an extended field of view.
- Instead of solving for a 2D phase, solve for a 3D phase (discrete or continuous). E.g 2-3 phase planes + a tomographic projector
- Naturally more overconstrained/robust than PD in individual direction + tomographic reconstruction (assuming # of field positions/images is larger than the # of phase planes).

Static tomography for NCPA

(NCPA optimizes the wave-front in the science beam, but may degrade it severely in the NGSWFS path !)

(NCPA issues for wide-field AO systems: Impossibility to compensate for anything that's not close to a DM conjugation altitude !)
Wind profiler method (Wang et al. 2008)

Time-delayed cross correlation between two wave front sensors, WFS_A and WFS_B , is :

$$T^{AB}(\Delta u, \Delta v, \Delta t) = \frac{\left\langle \sum_{u,v} S^{A}_{u,v}(t) \cdot S^{B}_{u+\Delta u,v+\Delta v}(t+\Delta t) \right\rangle}{O(\Delta u, \Delta v)}$$

 $S_{u,v}^{WFS}(t)$: X and Y slopes of the WFS in subaperture (*u*,*v*) at time *t* $O(\Delta u, \Delta v)$: overlapping illuminated subapertures for offset Δt : is a multiple of the acquisition time

Signal is retrieved by deconvolution $FT^{-1}[FT[T^{AB}]/FT[A]]$

$$A(\Delta u, \Delta v) = \frac{1}{2} \frac{\left\langle \sum_{u,v} S_{u,v}^{A}(t) \cdot S_{u+\Delta u,v+\Delta v}^{A}(t) \right\rangle}{O(\Delta u, \Delta v)} + \frac{1}{2} \frac{\left\langle \sum_{u,v} S_{u,v}^{B}(t) \cdot S_{u+\Delta u,v+\Delta v}^{B}(t) \right\rangle}{O(\Delta u, \Delta v)}$$

A is the average of the autocorrelations of WFS_A and WFS_B

GeMS' wind profiler

For T = 0 s, the turbulence profile in altitude is extracted from the baseline

For T > 0, the layers present can be detected and their velocity estimated

GeMS' wind profiler

For T = 0 s, the turbulence profile in altitude is extracted from the baseline For T > 0, the layers present can be detected and their velocity estimated

[Guesalaga et al. – MNRAS – 2014]

Star Clusters

MCAO for Astrometry

GeMS

Why MCAO is good for astrometry ?

- Active control of plate scales
- Large FoV => more reference stars
- PSFs are uniform over the field

MCAO for Astrometry

Why MCAO is good for astrometry ?

- Active control of plate scales
- Large FoV => more reference stars
- PSFs are uniform over the field

Rigaut, Neichel et al. 2012

MCAO for Astrometry

Why MCAO is good for astrometry ?

- Active control of plate scales
- Large FoV => more reference stars
- PSFs are uniform over the field

But astrometry is challenging:

Distortions in Science plane are difficult to calibrate.

Multi-epoch astrometric performance is ~ 1 mas

For crowded fields, it can be calibrated For sparse fields, looking for hardware solutions

Diffraction grid for high-precision astrometry programs

Guyon+12 Bendek+12 Ammons+12.

