Galaxy Evolution 1Jim DunlopUniversity of Edinburgh

I will focus on

- Motivation
- Continuum imaging at mm/sub-mm wavelengths
- Multi-frequency exploitation & connection

I will say little or nothing about

- CO and C+ spectroscopy
- Clustering
- Detailed studies of lensed sources

Problems with gas-dynamical models of galaxy formation Scannapieco et al. 2011 arXiv:1112.0315 (Aquila comparison project)

Problems with hydrodynamic models of galaxy formation Scannapieco et al. 2011 arXiv:1112.0315 (Aquila comparison project)

projected mass density $[\log(M_{\odot} / \text{ kpc}^{*})]$

 $6.50 \quad 7.00 \quad 7.50 \quad 8.00 \quad 8.50 \quad 9.00 \quad 9.50 \quad 10.00 \quad 10.50$

Problems with hydrodynamic models of galaxy formation Scannapieco et al. 2011 arXiv:1112.0315 (Aquila comparison project)

Problems with hydrodynamic models of galaxy formation Scannapieco et al. 2011 arXiv:1112.0315 (Aquila comparison project)

The big issue is feedback

- better observational constraints over cosmic time needed
- as well as a better understanding of milky-way star formation

Problems with semi-analytic & phenomenological models

Well known that mm/sub-mm data set demanding constraints e.g. Number counts from 1.6 sq degree of AzTEC 1.1 mm surveys Scott et al. 2012

Broader observational context: Cosmic history of sSFR

Gonzalez, V., et al. 2010

How can future mm/sub-mm observations help?

Better constraints on demographics

- More dynamic range in number counts
- Covering representative cosmological volumes
- With decent redshift information
- Extending to redshifts not well sampled by Herschel
- Reaching sufficient depth to detect "normal" high-z galaxies

Better information on basic physical properties

- Bolometric luminosities disentangling Herschel-SPIRE imaging
- Stellar masses, and specific star-formation rates
- Clustering halo masses duty cycles
- Morphologies no orientation selection bias
- Role within mass-selected samples

Better understanding of star formation & feedback mechanisms

- Importance of molecular hydrogen versus basic gas density
- Ionizing radiation and cosmic ray heating of molecular clouds
- Galaxy black-hole connection

Example - 2 alternative views of sub-mm galaxies

- 1. Sub-mm galaxies are high-z versions of local ULIRGS
 - moderate mass
 - major mergers
 - compact starburst
 - extreme Specific Star Formation Rate (sSFR=SFR/Mass) (e.g. Gonzalez, J. et al. 2010; Hainline et al. 2011; Engel et al. 2010)
- 2. Sub-mm galaxies are simply the high-mass end of normal star-forming galaxies at z = 2 3
 - high mass
 - high gas supply/reserve
 - spatially extended "normal" star-formation in discs?
 - standard sSFR what does this mean?
 - (e.g. Dave et al. 2010; Targett et al. 2011; Rujopakarn et al. 2011)

This requires a near-IR to mm perspective... HST WFC3 (~ 1 micron) - morphologies Spitzer IRAC (~ 5 micron) - stellar masses **BLAST/Herschel (~100 micron)** - T, star-formation rate SCUBA/Laboca/AzTEC (~1mm) - dust mass, SFR IRAM PdB/EVLA (mm-cm) - gas/dynamical mass

Problem: angular resolution dynamic range of ~500

The sub-mm source in the HUDF

Dunlop 2011, arXiv:1108.5679

HUDF

2-component SED fit to world's best photometry z = 2.97, stellar mass M_{*} = 2.5 x 10¹¹ M_{sun} (Chabrier IMF)

Stellar Masses

Even assuming accurate z and good optical-IRAC photometry, there are several issues:

- 1. Single or double component
- 2. Maraston or BC2003 models
- 3. Chabrier or Salpeter IMF

Stellar Masses

Even assuming accurate z and good optical-IRAC photometry, there are several issues:

1. Single or double component – need double-component fits

2. Maraston or BC2003 models – Maraston now ~ ruled out

3. Chabrier or Salpeter IMF – Salpeter seems to give excessively large masses

Gives average $M_* \sim 2 \times 10^{11} M_{sun}$

(e.g. Michalowski et al. 2011; Schael et al. 2011)

cf $M_* \sim 5 \times 10^{10} M_{sun}$ (e.g. Hainline et al. 2011; Bussmann et al. 2011)

Dynamical Masses

CO 3-2 work has yielded v ~ 300 km s⁻¹, r ~ 2 kpc

 \Rightarrow M_{dyn} = 2 x 10¹¹ M_{sun} (e.g. Tacconi et al. 2008)

But recent CO 1-0 results suggest v ~ 400 km s⁻¹, r ~ 6kpc

 \Rightarrow M_{dyn} ~ 5 x 10¹¹ M_{sun} (e.g. Ivison et al. 2010)

Gas Masses

Who knows.....

But dynamical masses can probably now accommodate ~50:50 split between stars and molecular mass, i.e.

$$\Rightarrow M_{gas} \sim 2 \times 10^{11} M_{sun}$$

Comparison with CO luminosities <u>could</u> then be consistent with CO to H₂ conversion ratio of ~5 as in the Milky Way, rather than 0.8 as assumed for ULIRGS (bi-model X_{CO} idea now discredited anyway – e.g. Krumholtz et al. 2011)

Morphologies

Some objects do seem to look like mergers, but Targett et al. (2011) found most sub-mm galaxies to have a dominant disc galaxy with $r_{1/2} \sim 3$ kpc.

But this result is based on ground-based K-band imaging (albeit with ~0.4 arcsec seeing)

Somewhat different conclusions have been reported from HST ACS and NICMOS imaging (e.g. Swinbank et al. 2011; Ricciardelli et al. 2010)

K-band imaging/modelling

But now we have WFC3/IR.....

Back to the sub-mm galaxy in the HUDF Low-redshift control – disc galaxy at z = 0.345

Galaxy Model fitting

Control galaxy z = 0.345 ACS B-band

Control galaxy z = 3 simulated WFC3 H-band

Disc galaxy Re = 8 kpc

Disc galaxy Re = 8 kpc

Real z = 3 submm galaxy WFC3 H-band

Disc galaxy Re = 5 kpc

And now we have CANDELS......

39 38 37 36 12^h 35^m Right Ascension (2000)

GOODS-South sub-mm sources

AzTEC 1.1 mm (Scott et al. 2010) 26' x 20' field

LABOCA 870 µm (Weiss et al. 2009) 30' x 30' field

25 sources in CANDELS area – only 1 LABOCA source not in AzTEC map

AzTEC.GS08 – clumpy disc?

CANDELS WFC3 H-band image Axi-symmetric Model

6 arcsec

LESSJ033243 – merger or very clumpy disc?

ACS I-band

Shallow H-band

So no great surprise NICMOS imaging seems to agree with ACS

LESSJ033243 – merger or very clumpy disc?

CANDELS WFC3 H-band image 4-component Model

Space based versus Ground based Ground-based K-band results are pretty good!

But WFC3 exposes the details & the underlying disc galaxy

High surface-brightness clumps ?

Big underlying disc

Morphological results in context

Detailed study of all ~220 galaxies in CANDELS UDS field with 1 < z < 3 and M_* > 10¹¹ M_{sun} Bruce et al. (2012)

Morphological results in context

~ All sub-mm galaxies at $z \sim 1.5 - 3$ are massive discs

~ 10% of massive galaxies at $z \sim 1.5 - 3$ are sub-mm galaxies

~ 50% of massive discs at $z \sim 1.5 - 3$ are sub-mm galaxies

In summary, the archetypal "8-mJy" sub-mm galaxy.....

- is a "mature" star-forming disc galaxy at z = 1.5 3
- is forming stars at ~500 solar masses per year
- has stellar mass
- has a gas mass
- has dynamical mass
- has implied halo mass

 $M_{\star} \sim 2 \ge 10^{11} M_{sun}$ $M_{a} \sim 0.5 - 2 \ge 10^{11} M_{sun}$

 $M_{d} \sim 5 \times 10^{11} M_{sun}$

$$M_{h} \sim 1 \ge 10^{13} M_{sun}$$

cf HeRMES clustering result

- has r_{1/2} ~ 3 kpc
- has sSFR ~ 2.5 per Gyr
- is "expected" at these redshifts.....

Herschel HerMES clustering measurement Cooray et al. 2011

500 micron sources live in halos with $M_d \sim 10^{13}$ solar masses

consistent with $M_* \sim 2 \times 10^{11}$ solar masses

Independent number – from Ricciardelli et al. 2010 <z=2.3> and <SSFR = 2.2>

What next on the mm/sub-mm imaging front?

SCUBA2 850 micron imaging of ~ 10 sq degrees

Deep SCUBA2 450/850 micron imaging of all CANDELS fields

Ultra-deep ALMA imaging of HUDF and GOODS fields

Need more area at bright end - e.g. SHADES-AzTEC fields

Michalowski, Dunlop et al., 2011

But hasn't Herschel covered plenty area?

Yes – but we need to properly milk the PACS+SPIRE dataset

Combining JCMT and Herschel observations

SCUBA2 - why do we still care about the JCMT?

Because it is 15 m wide

Resolution comparison of BLAST, Herschel and JCMT at 500/450 microns 50 square arcmin simulation based on BLAST counts

SCUBA2 needed to fully exploit Herschel maps (especially at high-z) to establish secure galaxy counterparts, and robust SEDs/SFRs

Wide 850- μ m survey: This component of the survey would be carried out when the opacity at zenith is in the range $0.05 < \tau_{CSO} < 0.10$. Using the SCUBA-2 ITC we calculate that mapping 1 degree² to a depth of $\sigma_{850} = 1.2$ mJy requires ~ 150 hours (using the opacity-weighted area for our survey and assuming a mean opacity of 0.08). Therefore the total time necessary to carry out the 10 deg² survey is 1497 hours over 2.5 years.

Deep 450- μ **m survey:** The Deep survey strategy uses the time when the weather conditions are suitable for high-frequency work: we propose confining data collection to $\tau_{CSO} \leq 0.05$. The aim is to achieve 3.75- σ detections of SMGs with $S_{450} = 4.5$ mJy. Using the ITC, the time required to map a 0.0625 deg² field to $\sigma_{450} = 1.2$ mJy is ~ 260 hours (again for our mean area-weighted opacity, assuming $\tau_{CSO} = 0.045$). Thus, as detailed below, to cover all five CANDELS fields we require 1156 hr with $\tau_{CSO} \leq 0.05$.

Survey	Field	RA DEC	Depth	au range	2.5-yr Area	2.5-yr Time	Notes
		(J2000)	(mJy)		(deg^2)	(hours)	
Wide	UDS+VVDS/XMM	021800-050000	$\sigma_{850} = 1.2$	0.05-0.10	4.0	612	HerMES Level-3/4/5
Wide	ECDFS	033200-281600	$\sigma_{850} = 1.2$	0.05-0.10	0.25	48	HerMES Level-2
Wide	COSMOS	100029+021200	$\sigma_{850} = 1.2$	0.05–0.10	2.0	293	HerMES Level-2
Wide	LH-East	10 52 43 +58 28 48	$\sigma_{850} = 1.2$	0.05-0.10	0.50	80	HerMES Level-3/5
Wide	LH-North	104600+590100	$\sigma_{850} = 1.2$	0.05-0.10	0.50	80	HerMES Level-3/5
Wide	GOODS-N	12 36 46 +62 13 58	$\sigma_{850} = 1.2$	0.05-0.10	0.25	43	HerMES Level-2/3
Wide	Bootes	14 32 06 +34 16 48	$\sigma_{850} = 1.2$	0.05-0.10	1.25	160	HerMES Level-5
Wide	EGS	14 19 18 +52 49 30	$\sigma_{850} = 1.2$	0.05–0.10	1.25	181	HerMES Level-3/5
				0.05-0.10	10.0	1497	
Deep	UDS	021800-050000	$\sigma_{450} = 1.2$	< 0.05	0.057	208	CANDELS
Deep	GOODS-S	033228-274830	$\sigma_{450} = 1.2$	< 0.05	0.041	285	CANDELS-Wide
Deep	COSMOS	10 00 29 +02 12 00	$\sigma_{450} = 1.2$	< 0.05	0.056	186	CANDELS
Deep	GOODS-N	12 36 46 +62 13 58	$\sigma_{450} = 1.2$	< 0.05	0.044	250	CANDELS-Wide
Deep	EGS	14 19 18 +52 49 30	$\sigma_{450} = 1.2$	< 0.05	0.054	227	CANDELS
				< 0.05	0.252	1156	

TABLE 1: FIELDS, DEPTHS, AND REQUESTED INTEGRATION TIMES FOR 2.5-YEAR S2CLS PROGRAMME

Total time request: This yields a total time request of: 2653 hr with $\tau_{CSO} \leq 0.1$ of which 1156 hr require $\tau_{CSO} \leq 0.05$.

ALMA can connect us to "normal" galaxies

What we should be doing.....

Facing a ~10 year hiatus in new space facilities

- Need/duty to exploit legacy of HST, Spitzer, Herschel, Chandra/XMM
- Need to prepare for JWST, EUCLID, IXO

This means the near-term focus should be to ensure that we:

- Fully exploit UK ALMA membership for deep continuum and spectroscopy
- Carry out wide-area (50-100 sq degree) imaging surveys with SCUBA2 and/or something else – e.g. in EUCLID Deep fields
- Further develop connections with radio surveys EVLA, LOFAR etc

How can future mm/sub-mm observations help?

Better constraints on basic demographics

- More dynamic range in number counts
- Covering representative cosmological volumes
- With decent redshift information
- Extending to redshifts not well sampled by Herschel
- Reaching sufficient depth to detect "normal" high-z galaxies

Better information on physical properties over cosmic time

- Bolometric luminosities disentangling Herschel-SPIRE imaging
- Stellar masses, and specific star-formation rates
- Clustering halo masses duty cycles
- Morphologies no orientation selection bias
- Role within mass-selected samples

Better understanding of star formation & feedback mechanisms

- Importance of molecular hydrogen versus basic gas density
- Ionizing radiation and cosmic ray heating of molecular clouds
- Galaxy black-hole connection