COSMIC REIONIZATION AFTER PLANCK: PROGRESS AND CHALLENGES

EDINBURGH 2016

Hydrogen Lyman Continuum Opacity

Reionization at PFLOPS Speed

Thomson Opacity vs. Observer Time

high-I likelihood (ACT+SPT) measurements

Planck/ACT/SPT Constraints on Reionization History

Fig. 14. Posterior distributions on the duration Δz and the redshift z_{re} of reionization from the combination of CMB polarization and kSZ effect constraints without (blue) and with (green) the prior $z_{end} > 6$.

A Concordance Reionization History?

Does Reionization End at z<6?

Galaxy-Dominated Reionization

Reionization at ~ FLOPS Speed

Large leakage values, fesc~0.15 -0.2, required for star-forming galaxies to reionize the universe are higher than typically inferred from observations of LBGs at $z\sim3-4$ (Mostardi et al 2013, Vanilla et al 2012). Grazian et al 2016 (VUDF): fesc< 0.02 R< 26.5 z=3.3!

What's Wrong with Faint Galaxies?

x [Mpc/h]

reionization are insufficient to explain the observed wide distribution of Ly α optical depths at 5 < z < 6: QSOs (Γ_{QSO} > 0.5 Γ_{tot})!

AGN-Dominated Reionization

HST-COS Observations of 159 0<z<1.5 AGNs

Composite spectra with rest-frame wavelengths 465–1750 Å, normalized to unit flux at 1100 Å (Stevans et al. 2014).

z≈0 f_{esc,AGN}=1 f_{esc,GAL}≈0 ⇒ AGN activity is a prerequisite for large UV leakages!

New 7 Ms Chandra Deep Field-South

Giallongo et al 2015, 2016: 19 faint AGNs in CDF-S 4.1 < z_{photo} <9.7 24<H<27 mag

Push the formal detection limits of 4/7 Ms Chandra X-ray data using O-NIR images as priors. This increases the detection rate of faint AGNs relative to blind searches.

1669 QSOs (r < 20.15) from BOSS

AGN Comoving Ionizing Emissivity

Very Extended Hell→Helll Reionization

A substantial volume of helium in the Universe was already doubly ionized at early times, in conflict with current models of He II reionization driven by luminous QSOs r> He II reionization must have begun at z>4!

Thermodynamics of the IGM

A power-law temperature-density relation, $T = T_0(1 + \delta)^{\gamma-1}$, arises in the low density IGM as a consequence of the interplay between photoheating and adiabatic cooling.

WHAT'S WRONG WITH THE FOREST?

A Wager

On the matter of when was the Universe fully reionized, there are two interesting cases: late, i.e. @ $z_{ion} \sim 6.3$ as perhaps implied by observations of the SDSS quasars, or early, i.e. @ $z_{ion} > 8$.

Nick Gnedin holds to the first case; Piero Madau claims the second case.

On this day, June 5th 2002, P. Madau bets N. Gnedin that future observations will imply an early epoch of reionization; N. Gnedin bets that $z_{inv} = 6.2 \pm 0.3$.

It is mutually agreed that A. Ferrara shall adjudicate in the matter when the data become available.

If the Italian is found to be right, N. Gnedin will furnish the former with a bottle of champagne of his choice. If the Russian is found to be right, P. Madau will furnish the former a bottle of champagne of his choice.

Signed: Piero Madau & Nick Gnedin

GALAXIES OR AGNS: ANYONE WILLING TO BET BEFORE JWST?

