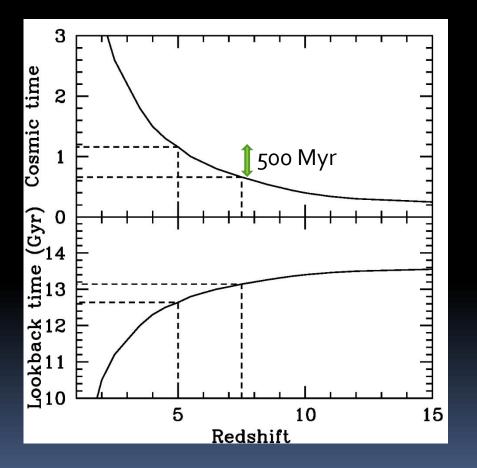
ey European Research Court

VUDS VIMOS Ultra Deep Survey

Olivier Le Fèvre Laboratoire d'Astrophysique de Marseille, France

BACK INTO REIONISATION: ARCHEOASTRONOMY FROM GALAXIES WITH Z~4-6

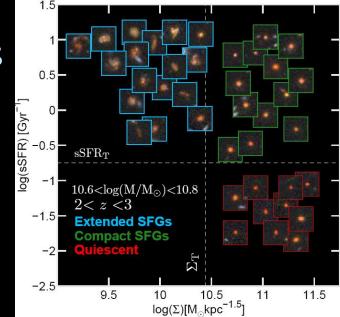

O. Le Fèvre¹, L.A.M. Tasca¹, P. Cassata¹, B. Garilli³, V. Le Brun¹, D. Maccagni³, L. Pentericci⁴, R. Thomas¹, E. Vanzella², G. Zamorani², E. Zucca², R. Amorin⁴, S. Bardelli², P. Capak¹², L. Cassarà³, M. Castellano⁴, A. Cimatti⁵, J.G. Cuby¹, O. Cucciati^{5,2}, S. de la Torre¹, A. Durkalec¹, A. Fontana⁴, M. Giavalisco¹³, A. Grazian⁴, N. P. Hathi¹, O. Ilbert¹, B. C. Lemaux¹, C. Moreau¹, S. Paltani⁹, J. Pforr¹, B. Ribeiro¹, M. Salvato¹⁴, D. Schaerer^{10, 8}, M. Scodeggio³, V. Sommariva^{5, 4}, M. Talia⁵, Y. Taniguchi¹⁵, L. Tresse¹, D. Vergani^{6, 2}, P.W. Wang¹, S. Charlot⁷, T. Contini⁸, S. Fotopoulou⁹, C. López-Sanjuan¹¹, Y. Mellier⁷, and N. Scoville¹²

Outline

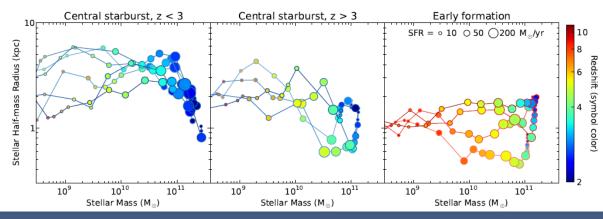
Learning from 4<z<6 to optimize surveys with JWST in the reionisation epoch and later

- Cosmic time and evolution
- The properties of galaxies at z~4-6
 - Sizes, morphology
 - Ages
 - Spectral properties: Lyα, CIII
- Back into reionisation
 - Formation redshift function

Cosmic time vs. evolution timescales


What can happen in ~100-500 Myr ?

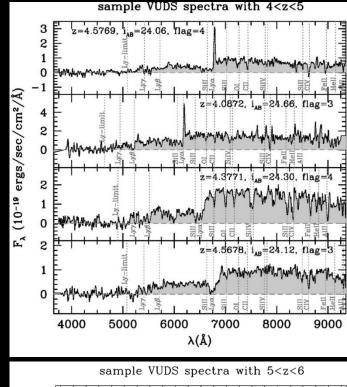
- Galaxies formed early in the reionisation z~10 are still starforming at z~5
- Dynamical evolution is rather long
 - Merging timescales: 0.5-1 Gyr
 - Violent disc instabilities: from proto-discs to clumps to protobulge

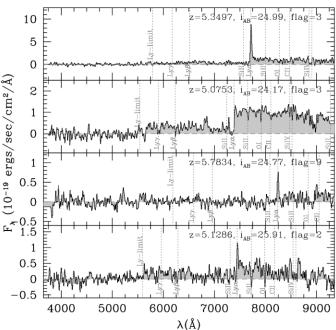

What we see at z~5 may not be that different from z>7

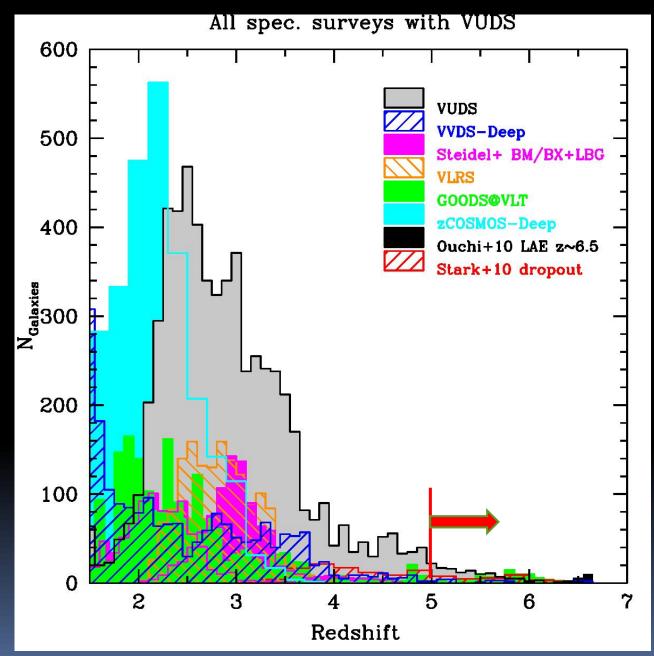
Following a range of galaxy formation and evolution paths

- Several paths for evolution identified
 - Forming compact star-forming galaxies, later becoming ellipticals (quenching)
 - Forming disks
- Many physical processes: merging, accretion, quenching, environment
- Make sure we are not missing any particular step when surveying reionisation with JWST
- Learn from z<6</p>

Barro et al. 2014

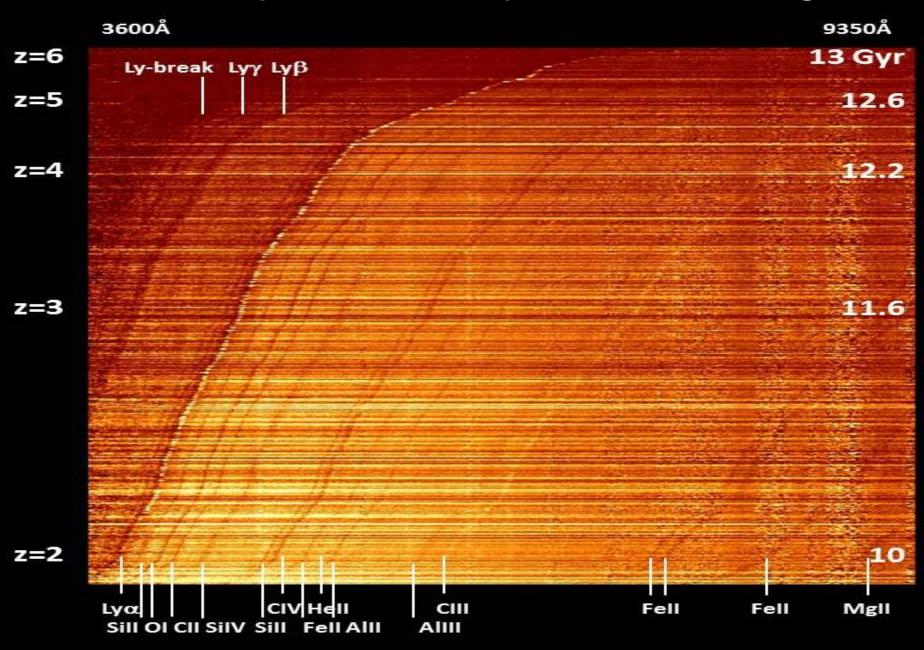


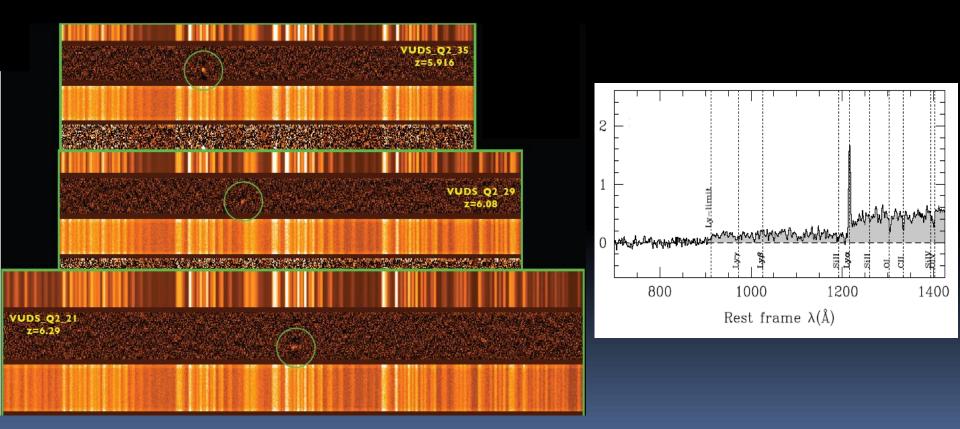

Wellons et al. 2015 (Illustris)


VUDS: spectroscopic survey 2<z<6.5

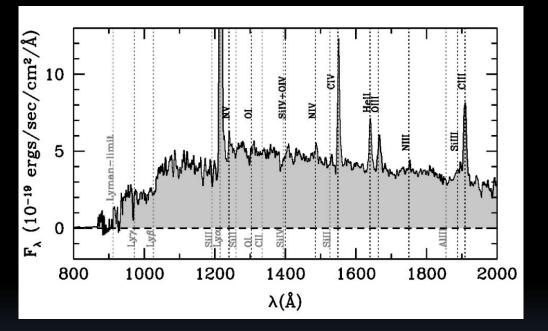
- ESO-VIMOS 3600-9300Å, exp.time=14hr
- 1 deg² in 3 fields (COSMOS, ECDFS, VVDS-02): mitigate cosmic variance
- 10,000 targets
- Z_{phot} selected: focused on 2<z<6
 1st and 2nd peak of PDF

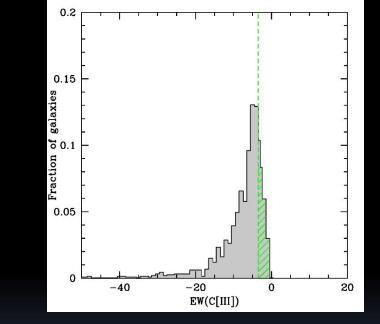
See Le Fèvre et al. 2015




Le Fèvre et al. 2015

VUDS ~7000 spectra to z~6:~3Gyr of evolution in one glance



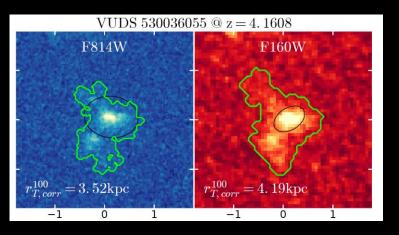


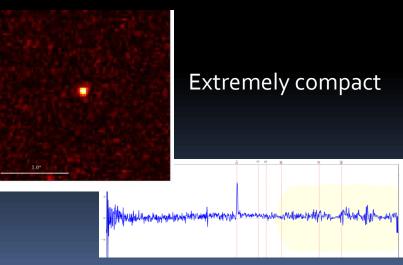
 About 100 galaxies with secure spectra being assembled

Spectral properties: prevalence of CIII-1909: a substitute to Ly α ?

- Stack of 20 strongest emitters EW(CIII)<-20: high ionisation lines: OIII, CIII, CIV, NIII, NIV, NV
- Young: ~10-100Myr
- Analogs to first galaxies in the reionisation?

CIII is rare at z~3-4 EW<-20: ~2.5% EW<-10: ~10% How frequent at z>6 ?

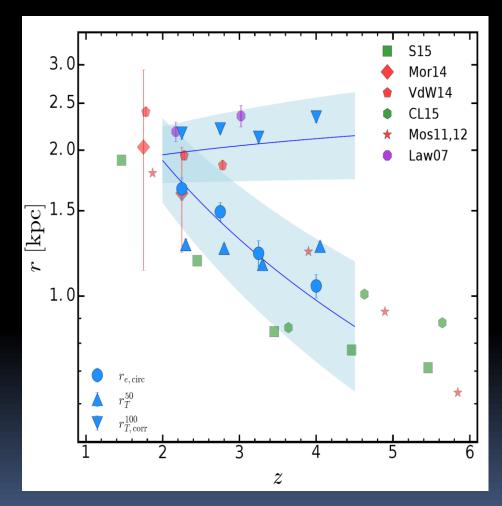

Ly α fraction evolution


Moderate emitters Strong emitters 0.4 OM_{FUV}<M+ <u>A</u>M+<M_{FUV}<M+1 ◊ -21.75<M_{FUV}<-20.25 Myoy<M* M+<Myy<M++1 -21.75<Myy<-20.25 0.3 n progress progress fraction LAE Stark et al. 2010 0.2 0.6 Rest W_{Lya}>75 Å -20.5<M_{UV}<-19.5 0.4 2 3 5 3 5 4 6 2 4 redshift redshift Cassata et al. $\mathbf{X}_{\mathrm{Ly}\alpha}$ (_{HI}(z=7)=0.0 2014 0.2 =7)=0.50.0 5 6 7 8 4

Redshift

The sizes and morphologies of galaxies

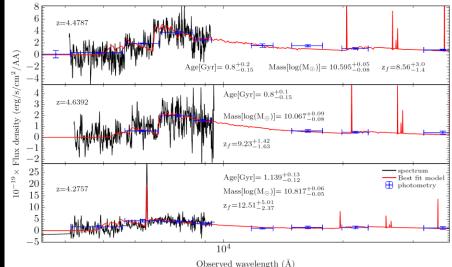
- Large range of sizes
- Forming galaxies
 - from extremely compact to extended and low surfacebrightness
 - Multi-clump
 - merging and violent disk instability

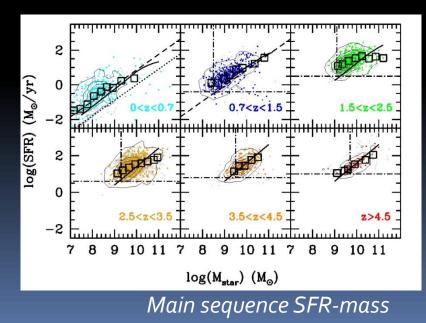


Tasca et al. In prep.

Large, extended, multi-clump

Evolution of galaxy sizes z=2 to 5

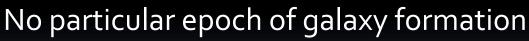

- HST imaging (COSMOS, CANDELS) with VUDS spectroscopic redshifts
- Measure sizes
 - <u>Effective radius</u> (makes symmetry hypothesis)
 - <u>Total radius</u> (down some isophote)
- Galaxies are large ~2kpc objects at all redshifts
- Concentration gets lower with decreasing z
- Imprint of assembly process


Ribeiro et al. arXiv:1602.01840

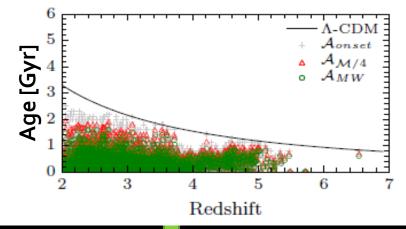
Galaxy ages, stellar mass, SFR

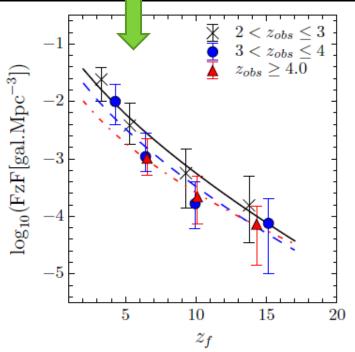
- Age measurements at z>2 are as robust as mass or SFR
 - Degeneracies can be lifted with
 - Age of the Universe
 - Combined photometry and UV-rest spectra
- JWST rest UV+optical+near-IR (NIRCAM, NIRSPEC, MIRI, NIRISS): accurate age, mass and SFR into reionisation

Model fitting: spectrum+photometry



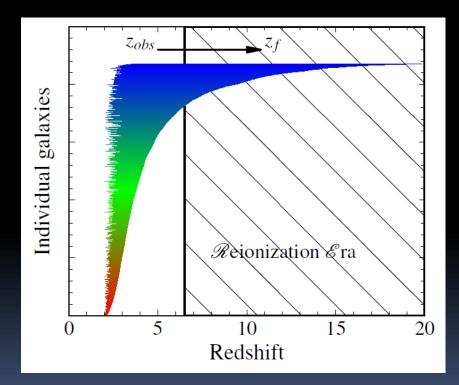
Epoch of galaxy formation


- Formation redshift function (FzF):
 - Number of galaxies per unit volume formed at z_f
 - Derive z_f from Age and observed redshift


FzF: rise of 2dex from z~10 to z~3

- Similar to the rise in SFRD
- Average SFR 8-20 Msun/year at z~5

- Galaxies form at all times
- More galaxies formed when nearing the SFRD peak



Thomas et al. arXiv:1602.01841

Archaeology: from z~4-6 to the reionization

- Out of ~4500 VUDS galaxies, ~700 have started forming their stars before z=6.5
- z_f going to z>~15
- Main uncertainty: star formation history
- These galaxies contain the imprint of what happened then

VUDS galaxies z_{obs} to z_f ordered by z_f

Summary: impact on surveys with JWST

- Expect a wide range of galaxy properties in the reionisation epoch:
 - Search NIRCAM and MIRI images with broad parameter space
 - Census of the galaxy population without bias
 - NIRSPEC: broad parameter space for sample pre-selection
 - Account for galaxy sizes and morphologies
 - NIRISS line emitters: solve redshift degeneracies
- Plan for surveys with continuous sampling in redshift z>4: complete knowledge of reionisation will require accurate knowledge of the population just after reionisation