Galaxy formation in the epoch of reionization

Ivo Labbé, Leiden University, July 5 2016

Galaxies at cosmic dawn

Identify and characterize our cosmic origins when universe was only few% of its present age

- Early universe is an good testbed for theoretical models (closer to initial conditions, simpler physics)
- Probe galaxies at <1Gyr to understand cosmic reionization (last major phase transition of Hydrogen).
 Were there enough ionising photons?

Did Galaxies Reionize Universe?

ionizing emissivity

$$\dot{n}_{\rm ion} = f_{\rm esc} \,\xi_{\rm ion} \,\rho_{\rm UV}$$

1) abundance of (low luminosity) sources integrated UV luminosity density $\rho_{\rm UV}$

2) stellar populations Lyman-continuum photon production efficiency (ξ_{ion}) per UV-continuum luminosity

3) Escape fraction of Ly-c photons f_{esc} (see Erik Zackrisson's talk)

4) Optical depth of electron scattering to CMB: τ

Good agreement with faint galaxies for reasonable $f_{esc} \xi_{ion} \rho_{UV}$

8-10m ground

Spectroscopic confirmation rest-UV spectra K-band imaging

Spitzer rest-optical nebular emmission stellar masses

CANDELS + GOODS + HUDF

Almost 1000 galaxies in the epoch of reionization at z>6Current frontier: $z\sim9-10$

The evolution of the UV luminosity function

see also: Oesch+10a/12, Bouwens+10a,11,12; Bunker+10, Finkelstein+10/14, Wilkins+10/11, McLure +10/13, Yan+12, Bradley+12

The evolution of the UV luminosity function

see also: Oesch+10a/12, Bouwens+10a,11,12; Bunker+10, Finkelstein+10/14, Wilkins+10/11, McLure +10/13, Yan+12, Bradley+12

Fraction of UV luminosity function directly observed

Finkelstein+16

The Hubble Frontier Fields

The Hubble Frontier Fields

Extending Analyses ito Sainter Luminosities...

apparent continued steep increase in LF down to M_{UV} ~-13

caution: unclear how much these LFs can be trusted given uncertainties in high-magnification regions (>10x)

The Hubble Frontier Fields

And higher redshifts z=9-10...

Including HFF galaxy candidates, not failed astimate of the timate of the timate of the UV LF at z~10. continued linepid fector tion to be to we have a stimate of the time to be a stimate of the stimate of the time to be a stimate of the time to be a stimate of the time to be a stimate of the stimate of the time to be a stimate of the stimate of the time to be a stimate of the time to be a stimate of the time to be a stimate of the stimate of the time to be a stimate of the time to be a stimate of the time to be a stimate of the stimate of the time to be a stimate of the time to be a stimate of the time to be a stimate of the stimate of the time to be a stimate of the stimate of the time to be a stimate of the stimate of t

Fast evolution from z~8 to z~10. bright end at z=9-10 see Michele Trenti's talk

See also McLeod+16

Rapid Decline in SFRD towards high redshift

Rapid decline in the cosmic SFRD is consistent with most models but there is a considerable range in predicted evolutions at z>8. Need to understand this before launch of JWST to plan most efficient surveys!

Predictions at z > 10 for JWST

Despite decline: most models predict deep JWST/NIRCam observations will reach to z~15

Spitzer/IRAC

stellar masses and emission lines

Spitzer in Space

www.spitzer.caltech.edu

Matched HST + IRAC data are key Very Faint, Individually Detected z~7-8 Sources

Small area over GOODS-S has 180-220 hour IRAC exposure times (27.4 mag, 3o) Ongoing program (**GREATS**; PI Labbe, 733 hrs) to push full GOODS-S+N Deep to this depth

data release fall 2016

see also Karina Caputi's Talk

Evolution of the Galaxy Stellar Mass Functions to High Redshift

The Evolution of the Total Stellar Mass Density

Caveat: very Strong Nebular Lines are Ubiquitous at z>4

Rest-frame EW Ha+[SII]+[NII] ~ 400A at z~4.5 Rest-frame EW Hb+[OIII] ~ 700A at z~7-8 (>1000A are common)

Easily detectable with JWST!

e.g., see also: Schaerer & deBarros09, de Barros+14, Shim+11

IRAC colors encodes useful information!

Constraints on lonizing-to-UV photon ratio ξ_{ion}

stellar population details (binaries etc)

some dependence on dust

Dust inferred from UV colors

relies on IRX-beta relation: untested at z > 3Test with ALMA

ALMA results: dust not important at high redshift?

current situation not entirely clear:

- ALMA dust continuum at z>4 lower than expected (Capak+2015, Bouwens+2016)
- significant source to source scatter (c.f. Watson)
- CII 158 micron cooling line easily detected in z=5-6 LBGs (e.g. Capak+15)

1.2 Shapley+2003 Lya low-ion IS abs high-ion IS abs strongest feature stellar nebular em fine-structure em H I em/abs 0.8 f_ν (μJy) 9.0 Hell CIII] 0.4 0.2 weak, but 4MMA possible 0 1200 1400 1600 1800 1000 λ (Å)

Groundbased spectroscopy

- ionising continuum
- kinematics

Year of Discovery

ISM

10

Spectroscopic Redshift

8

6

4

• Ly– α demographics

infrared at z > 4, where we do not present sitive spectroscopic capabilities. Additional proven to be relatively common amongst

Lya fraction as a Probe of Reionization

- Lyα resonant scattered by neutral H reduces visibility
- epoch of reionization IGM becomes significantly neutral: implies sudden drop in Lyα fraction
- unless galaxy lies in an ionized bubble

Lya fraction declines sharply for z > 6

Inferred x(HI) depends on details of

- residual neutral HI inside the bubbles (or self shielding Lyman limit systems)
- redshift evolution of ionising photon production + escape fraction.
- velocity offset of Ly- α

using IRAC excess to select bright 7 < z < 9 galaxies with extreme emission lines

[OIII]+Hβ boost 4.5 micron band

Roberts-Borsani+2015

all 4/4 sources show show strong Ly-a: two redshift records

see also Stark+2016,Roberts-Borsani+2016

How can this be? Intense radiation field from CIII] + [OIII]+Hβ EW

Massive galaxies as signposts of patchy accelerated reionization

Large contiguous degree-scale fields needed

Approved UltraVISTA extensions in near-IR, IRAC still needed Will not be done by JWST, critical for follow up

A luminous, massive galaxy at z=11.09

Lyman Break detected at z=11optical F105W F125W F140W F160W [3.6] [4.5] GN-z11

Unexpected in such a small volume

GN-z11 was "known" since 2008

same photo-z as with new data, but was ruled out as not likely to lie at z>9 due to single band detection and its luminosity (Bouwens+10)

Slower evolution at the bright end of the UV LF?

Need wide Slaves NHPPilwhiging tale abright or adolirately det Ermine number density of bright sources and to find such candidates for JWST follow-up

JWST/NIRSpec: Unprecedented Spectra

Wavelength [micron]

- JWST will be extremely efficient in spectroscopic characterization of z>7 galaxies, OIII out to z~9
- Current, bright z~9-10 galaxies will also be very quick to spectroscopically confirm
- For brightest targets, like the recently confirmed target EGS-zs8-1 at z=7.73, we will even be able to measure absorption lines individually
- Are working on collecting largest possible samples of very bright galaxies at z>=8

What is the ionization state of gas in early galaxies?

What is their dynamical state?

Summary

- Deep imaging with HST enabled the detection of an unprecedented sample of galaxies at z>4, and extended our frontier into the heart of the cosmic reionization epoch (>800 galaxies at z~7-10). Cosmic Frontier: z=11.1
- The UV LF is extremely steep during the reionization epoch (faint end slopes as steep as $\alpha = -2$) and evolved quickly.
- CMB constraints imply lower instantaneous reionization redshift z=8.2 → ultra-faint galaxies likely main drivers for reionization
- Combination of very deep HST and IRAC data allow us to measure rest frame optical colors and stellar mass build-up from z~10 to z~3-4. We now explored 97% of cosmic history in build-up of star-formation and mass
- Strong emission lines inferred from IRAC and strong CIII] at z=7-8: unusual stellar populations, intense radiation fields and high ξ_{ion}
- surprising Ly-α detections at z>7 to z=8.68: patchy reionization? Large fields need to be studied!
- Will be able to do detailed astrophysics with JWST/NIRSpec: ionization state, SFR, metallicity, dynamical state
- Discovery of GN-z11 in current search area is surprising according to models: Need larger area surveys to confirm the number densities of bright galaxies at z>10. Needs to be done now with HST, likely won't be done with JWST!