Unveiling the nature of **bright** z ~ 7 galaxies with *HST*, ALMA and *JWST*

Rebecca Bowler Hintze Fellow, University of Oxford Nicholas Kurti Junior Fellow, Brasenose College

with Jim Dunlop, Ross McLure, Derek McLeod, Matt Jarvis

Bright galaxies into the EoR

NIRCam/NIRSpec GTO surveys:

Deep ~ tens sq. arcmin Wide 400 sq. arcmin (< CANDELS)

UltraVISTA Survey / COSMOS field

UKIDSS Ultra Deep Survey / Subaru XMM-Newton Deep Survey

Bright galaxies into the EoR

Lyman-break galaxies as bright as $m_{AB} = 24$, without lensing

~ few per sq. degree for the brightest LBGs

10^{-2} Ground-based 10^{-3} Number/mag/Mpc 10-10⁻⁵ Bowler et al. (2014) Bowler et al. (2012) McLure et al. (2013) 10⁻⁶ Bouwens et al. (2011) Castellano et al. (2010ab) Ouchi et al. (2009) McLure et al. (2013) 10^{-7} Double Power Law Fit 10⁻⁸ -22 -20-18-24 M₁₅₀₀

HST surveys

e.g. CANDELS, UDF+

Bright galaxies into the EoR

Lyman-break galaxies as bright as $m_{AB} = 24$, without lensing

~ few per sq. degree for the brightest LBGs

UltraVISTA Survey / COSMOS field

ubaru XMM-Newton Deep Survey

Near-infrared data from: UltraVISTA* in COSMOS, UKIDSS and VIDEO* in the UDS

Total area = 1.65 sq. deg

*ESO Public Surveys

The sample of bright z ~ 7 LBGs

~30 Lyman-break galaxies at z ~ 7 (11 brighter than mAB = 25.0)
10 < SFR < 40 Msun/yr
median rest-frame UV slope β = -2.0
half-light radii from 0.5-3kpc

Nebular emission in bright LBGs

- ★ Deconfused Spitzer SPLASH data at 3.6 and 4.5 microns
- Hints at extremely strong rest-frame optical emission lines
- * rest-frame EW (Hβ + [OIII]) = 600-1800A

Nebular emission in bright LBGs

- NIRSpec will clearly detect these lines + the continuum
- Metallicity, Ionisation parameter, temperature indicators
- Balmer break measured directly
- Also access to rest-frame UV lines

with R =100, t ~ 8 min; R=1000, t < 1hr

c/o Peter Jacobsen

Revealing the nature of bright LBGs

The sample includes the **brightest** known z ~ 7 galaxies, which are ideal targets for detailed follow-up:

... in relatively modest integration times:

few hours with near-IR spectrographs (e.g. Oesch+2015, Roberts-Borsani+2015...)

modest integrations with ALMA (e.g. Capak+2015, Maolino+2015...)

Revealing the nature of bright LBGs

HST can reveal sizes/ morphologies that are elusive in ground-based data

Optical and near-infrared spectroscopy can reveal rest-UV emission lines

ALMA provides unique view of dust emission

ALMA observations of the dust continuum Cycle 3 imaging of 6 bright LBGs at z ~ 7

Measured with ALMA

e.g. the 'dusty normal galaxy' at z = 7.5 from Watson et al. (2015)

Balmer decrement and β
 measured by NIRSpec can
 be directly compared to
 ALMA results

HST/WFC3 follow-up of bright LBGs

17 orbits of HST/WFC3 using the wide JH140 filter

Targeting 17 of the Bowler et al. (2014) sample with 6.5 < z < 7.2, $M_{UV} < -21.5$

<image>

Multiple-components?

Jiang et al. (2013)

HST/WFC3 imaging of M < -21.5 LBGs

Ouchi et al. 2009, 2013

Sobral et al. 2015

- The brightest Lyman-break galaxies at z ~ 7 are composed of multiple clumps under HST resolution
- Magnitude limited sample, not selected for line emission

arXiv:1605.05325

Clumpy galaxies at high redshift

z = 2-3 SF galaxies

Elmegreen et al. 2005

NIRCam will reveal the underlying stellar mass distribution

- WFC3 FWHM ~ 0.2", NIRCam <~ 0.1"
- ★ S/N ~ 50 for < 10 min

Summary

 ★ Using ground-based data from the UltraVISTA + UDS we now have samples of extremely bright star-forming galaxies at z = 7
 ★ The sample is ideal for detailed follow-up to study galaxy properties into the EoR

 \star Observations with HST reveal a clumpy morphology at Muv < -22

With **JWST**:

★ Rest-frame optical emission lines (hence Z, U, T)
★ Underly morphology of the rest-frame optical
★ The presence of dust at z ~ 7