LBG sample

Sample ~ 20.000 LBGs

Stacking analysis and Binning

- LBG samples present incompleteness at IR, which increases at longer wavelength observations. For example, less than 0.05% of our LBGs sample is detected at SPIRE-250µm.
- The objective of this work is to obtain the rest-frame FUV to FIR emission for LBGs population at z~3.
- We performed stacking analysis form the Optical to mm available wavelength observations at COSMOS field.
 - **Optical:** SUBARU (B, V, r, i, and z bands)
 - **NIR:** UltraVISTA (Y, J, H, Ks)
 - **Mid-IR:** IRAC (3.6, 4.5, 5.8, 8μm) and MIPS (24 μm).
 - $\circ~$ Far-IR: PACS (100 and 160 μm) and SPIRE (250, 350, 500 μm)
 - \circ **mm:** AzTEC (1.1mm)

• Our Stacking analysis have been corrected by:

- The incompleteness of our input catalogue in dense regions (Important for faint population)
- The clustering of galaxies.
- The contribution of the field sources.

Stacking analysis and Binning

	Interval	N ^o of bins
L _{FUV}	$10.2 < \log(L_{FUV} [L_{\odot}]) < 11.4$	4
β _{uv}	$-1.7 < \beta_{\rm UV} < 0.3$	4
M*	$9.75 < \log(M_* [M_{\odot}]) < 11.5$	6
Μβ1	1: 9.75 < $\log(M_* [M_{\odot}])$ < 10.65 2: 10.65 < $\log(M_* [M_{\odot}])$ < 11.5	2 in M _* 3 in β _{υν}
Μβ2	1: $-1.7 < \beta_{UV} < -0.8$ 2: $-0.8 < \beta_{UV} < 0.3$	2 in β _{υν} 5 in M _*

This configuration will give us **30** different bins to characterize the LBGs population at $z\sim3$ **as a function of L**_{FUV}, β_{UV} , M_{*}, **and the combination of** (β_{UV} , M_{*})

Stacking as a function of M_* (10.25 < Log(M_*) < 10.5)

SED-fitting analysis: CIGALE

CIGALE is a self-consistent SEDfitting code designed to provide the main physical parameters of galaxies, by using Bayesian-like analysis and energy balance.

Best model for LBG_mass_1000_1025 at z = 3.0. Reduced χ^2 =0.52

Stacked SEDs and SED-fitting results

Stacked SEDs and SED-fitting results

Stacked SEDs and SED-fitting results

SEDs and SED-fitting analysis

Dust attenuation for LBGs at z~3

10.0

1.0

0.1

-2

-1

0

UV slope β at 0.16! m

Casey+14

Meurer+99 Overzier+11 Takeuchi+12 Best-fit Local (this work)

2

3

	Interval	Nº of bins
β _{υν}	$-1.7 < \beta_{UV} < 0.3$	4
M _*	$9.75 < \log(M_* [M_{\odot}]) < 11.5$	6
Μβ1	1: 9.75 < $\log(M_* [M_{\odot}])$ < 10.65 2: 10.65 < $\log(M_* [M_{\odot}])$ < 11.5	2 in M _* 3 in β _{υν}
Μβ2	1: $-1.7 < \beta_{UV} < -0.8$ 2: $-0.8 < \beta_{UV} < 0.3$	2 in β _{υν} 5 in M _*

Dispersion on IRX- eta_{UV} and IRX-M_{*} plane

	Interval	Nº of bins
Μβ1	1: 9.75 < log(M_* [M_{\odot}]) < 10.65 2: 10.65 < log(M_* [M_{\odot}]) < 11.5	2 in M _* 3 in β _{υν}
Μβ2	1: $-1.7 < \beta_{UV} < -0.8$ 2: $-0.8 < \beta_{UV} < 0.3$	2 in β _{υν} 5 in M _*

A combination of IRX, β_{UV} , and M_* , in a 3D plane, will presents the best combination to obtain the dust attenuation of a galaxy, this will break the dispersion in the IRX- β_{UV} and IRX- M_* plane (working in progress).

Shape of the dust attenuation curve for LBGs at z~3

Wavelength (µm)

Next with JWST and Summary

- NIRCam + MIRI will give access to the FUV to NIR spectrum domain at high-z (z~5-7), that will provide a possibility to calculate the shape of dust attenuation.
- Additional data of ALMA will give a self-consistent amount of dust attenuation (IRX or A_{FUV}) for this high-z galaxies.

Summary

We perform a stacking analysis using large sample of LBGs (20.000) from Optical to mm observation in the COSMOS field:

- We obtain 30 different SEDs for LBGs at z~3 as a function of LFUV, βUV, M*, and the combination of (βUV, M*).
- We present the mean dust attenuation as a function of βUV and M* for our LBGs population.
- We investigate the dispersion on the IRX-βUV and IRX-M* plane as a function of βUV and M*.
- Shape of dust attenuation evolve with the M*.