

The Precision Radial Velocity Spectrometer Science Case

*The science case for PRVS is compelling:

Discover terrestrial-mass planets in the habitable zones of ubiquitous low-mass stars for the first time.

1.0-1.75 micron single-shot, always available, design affords wide-range of other high-profile science.

* Primary science driver: Find terrestrial mass planets in the habitable zones of nearby low-mass stars

The habitable zones of M stars correspond to orbits of only days or weeks.

MARCHANNI PRVS Science Case

- ***** PRVS will lead to a better understanding of the origin of our planet and life on it.
- ***** PRVS will answer questions about the
 - ***** origin of planetary systems
 - * diversity of planetary systems
 - * physical processes and initial conditions that produce different types of systems
 - ***** frequency of planets that might support life
 - * planet formation mechanisms around low-mass stars — is gas accretion suppressed around lowmass stars?

***** Methods for exoplanet discovery

- ***** Radial velocity (196 planets)
- ***** Pulsar timing (4 planets)
- Transits (12 planets)
- ***** Gravitational microlensing (4 planets)
- ***** Astrometry (1 confirmation)
- ***** Direct imaging (4 planets?)
- * PRVS will be highly complementary to optical RV searches, transit searches, NICI and GPI imaging searches
- * No direct competition in the PRVS corner of parameter space in the near future

MAN GEMINI OBSERVATORY **PRVS Science Case**

A new hope: Astronomers reach 200-exoplanet milestone

Posted 7/24/2006 7:44 AM ET

E-mail | Save | Print | Subscribe to stories like this RSS

Science Snapshot

Dan Vergano

In real life, science fiction turns into science with little fanfare, certainly a disappointment for fans of zap guns, teleportation and mini-skirted aliens. Take the discovery of planets circling nearby stars — a minor sensation a few years ago, but now almost humdrum. With little fanfare though, planet detectives have now found an astounding 200 planets orbiting nearby stars.

A little more than a decade ago, that number was zero. Since that time,

* Precision radial velocity measurements have produced most of the exoplanet discoveries
* 2078 exoplanet papers published between 1998 and 2005. A very active field!

- ***PRVS will search for planets around**low-mass stars
 - *****M dwarfs are much more numerous than more massive stars
 - Optical RV surveys are limited to stars more massive than early M dwarfs (>0.3 Msun); lower mass stars are too faint for optical RV surveys
 - Precision of 1 to 3 m/s is required to detect earth-mass planets

- ***PRVS will search for planets around**low-mass stars
 - M dwarfs are much more numerous than more massive stars
 - Optical RV surveys are limited to stars more massive than early M dwarfs (>0.3 Msun); lower mass stars are too faint for optical RV surveys
 - Precision of 1 to 3 m/s is required to detect earth-mass planets

***PRVS will search for planets around**low-mass stars

- M dwarfs are much more numerous than more massive stars
- Optical RV surveys are limited to stars more massive than early M dwarfs (>0.3 Msun); lower mass stars are too faint for optical RV surveys
- * Precision of 1 to 3 m/s is required to detect earth-mass planets

* The habitable zones of low-mass stars are more accessible to RV surveys because the orbital periods are shorter

Habitable zone inside 0.3 AU for M dwarfs

Tidally locked planets may or may not be good places to look for life

M dwarfs flux peaks at 1 to 1.5 μ m

Pavlenko et al. (2006)

Data from Mclean et al. (2007)

Low mass planets are already being discovered around M dwarfs, but it is tough even for Keck

GI876 (M4V), 4.7pc 1.9 day period Msini=7.5MEarth 1997-2005 Keck monitoring including data on 6 consecutive nights Rivera et al. (2005)

GEMINI OBSERVATORY **PRVS Science Case**

What about stellar variability?

- Rockenfeller et al. (2006) find that around 30% of M dwarfs are variable in I band
- * About 50% of L dwarfs variable
- Low-mass stars show less variability in the IR

*****M dwarfs may show less jitter than more massive stars *****M dwarf activity probably limited to only the youngest stars

Keck Sample, Wright (2005)

*No evidence for increasing jitter with later type for M dwarfs

25 20 m/s 15 σ_{rv} **+ + + + +** ± 10 5 + 5 6 3 \cap 2 4 M Spectral Type

M dwarf survey of Endl et al. (2006)

GEMINI OBSERVATORY **PRVS Science Case**

What about rotation?

- Later M dwarfs rotate more rapidly
- However, many planets have been discovered by optical RV surveys around stars with v sin i up to 10 km/s

***** Even though rotation reduces the precision of the RV measurements, there are sufficient M dwarfs with low rotation velocities for the PRVS survey

Plenty of low-mass planets have been discovered despite strong bias against detection

Butler et al. 2006

***** A conservative estimate of a 5 year PRVS survey of 700 local M-dwarfs should turn up ~80 planets less massive than 100 M_{\oplus}

*Hundreds of M-dwarfs ~0.15 M_{sun} with J<12 are available for survey (projected S/N=300 in 1 hour at J=12; exposure for J=9 is 300 sec)

***** Example Mock Surveys including stellar and instrumental properties:

S/N:	300				125			
Nights/year :	100		50		100		50	
Vsin i/km/s:	All	<10	All	<10	All	<10	All	<10
~ Sp. Type	Number of Stars				Number of Stars			
M2.5 V	77	90	35	41	90	90	45	45
M3.0 V	77	90	35	41	90	90	45	45
M4.0 V	77	90	35	41	90	90	45	45
M5.0 V	77	90	35	41	90	90	45	45
M6.0 V	77	58	35	41	90	90	45	45
M6.5 V	35	17	35	17	80	90	45	45
M8.0 V	10	5	10	5	80	59	45	45
M9.0 V	3	1	3	1	38	17	29	14
L1.0	1	0	1	0	15	1	11	1
Total	434	441	224	228	663	617	355	330

In 50 n/yr we could survey 200+ stars; with 100 n/yr the sample could be increased to 400+.

*****Surveys will be refined using

- *****Discovery of more M, L, T, and Y dwarfs using, e.g., UKIDSS and PanSTARRS, etc.
- Measurement of v sin i values for survey stars
- Improved understanding of RV information in M-dwarf spectra
- *Test data from prototype "Pathfinder" instrument constructed at Penn State
 - *****Funded by Penn State
 - *****Demonstrate and test calibration techniques
 - *****Test bed for IR stability measurements
 - **₩Will be used at HET**

GEMINI PRVS other science

- * Planetary atmospheres
- * Exoplanetary atmospheres
- Brown dwarf astmospheres
- * Low-mass spectroscopic binaries
- Rotational velocities of young and low-mass stars
- ***** Hot protostellar disks

- Stellar magnetic fields and stellar activity
- * Astroseismology
- # Jet and shock physics
- * Masses and ages of star clusters in spiral galaxies
- * Fine structure constant measurements
- * Absorption lines in the foreground of GRBs

* z=7-12 cosmology

- * Probe ionization history of the universe by taking spectra of GRBs
- Requires rapid follow-up, queue scheduling

z=6.29 GRB spectrum 3 days after burst Totani et al. 2006

*The PRVS science case is compelling: PRVS could detect the first earth-mass planet in a habitable zone

- *****Great public interest
- *****Active research community
- *****Key part of the Aspen science mission
- Conservative design that is likely to achieve its science goals
- *No competition yet in this area of planet discovery parameter space