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Synoptic imaging surveys take data all
the time - even In poor conditions

Strong lens detection:

*\What will lensed quasars look like in the
PS1 and LSST catalogues? How might we
find them, cleanly?

Atmospheric PSF anisotropy:

* Can we predict the shape of the PSF at
any given sky position, just from the stars
observed in a 15 second exposure?



Strong gravitational lensing

« Massive galaxies lying right in front of distant quasars can provide 2 or
more possible null geodesics that connect to our detector - all of them are
followed and we see multiple, time-delayed images of the same AGN

« Science applications include: weighing the “lens” galaxy; quantifying
the lens aberrations due to its “missing” CDM subhalos; measuring an
absolute distance to the lens from the time delays; and much more...

Figure: Dan Coe (2011), OMEGA Project
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How many lensed quasars are there?

QSO (detected)

QSO (measured)

sSurvey Nnonlens Nlens Nhnonlens Nlens
SDSS-1I1 1.18 x 10° | 26.3 (15%) 3.82x 10* [ 7.6 (18%)
SNLS 0.23 x 105 | 3.2 (12%) 3.45x 10° | 1.1 (13%)
PS1/3w 7.52 x 10% 1963 (16%9%) R R
PS1/MDS 0.55 x 104 30.3 (13%) 3.49 x 104 9.9 (14%)
]:)I‘:S,-"v:ic_le“- 3.68 x 10° 1146 (14%)

DES /deep 1326 5 10* 1.4 (12%) 6.05 x 103 2.0 (13%)
HSC /wide 1.76 x 10° 614 (13%) e e
HSC/deep 7.96 x 10¢ | 29.7 (12%) 4.30 x 104 | 15.3 (13%)
JDEM/SNAP 5.00 x 104 21.8 (12%) 5.00 x 10* | 21.8 (12%)
LSST 2.35 x 107 | 8191 (13%) 0.97 x 106 | 3150 (14%)

+ HSC+

* How are we going to find them all”? What will they

+PS1: ~3000 lenses (400 quads);
« LSST should detect ~8000 lenses (1000 quads)

look like? In the images? In the catalogs?

‘
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ImSim

Monte Carlo:

each exposure has
about as many
signal photons as
pixels...

M2 3 4m 80 82

Telescope optics |/

Size

Size

Inc Size Size | M1 Eam 114

object 2213 - 282  SEDS/Galaxy_v2/bc2003_hr_m62_57. 3412 galaxy 1.0 086 0.189 i3y 1.881
object 22161 26.73  SEDS/Gal 3424 galaxy 1.0 139 0307 11742 2.
object 2212 -0.24 2824 SEDS/Ga 3455 galaxy 1.0 2 044236 131 0.02103
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ImSim: LSST lensed quasars

No subtraction
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* Lenses in mock LSST catalog from Oguri & Marshall (2010)
supplied as reference catalog to ImSim. Initial testing:
Jernigan et al, AAS2011. Ongoing: LSST DC3b PT1.2



ImSim: LSST lensed quasars
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* Lenses in mock LSST catalog from Oguri & Marshall (2010)
supplied as reference catalog to ImSim. Initial testing:
Jernigan et al, AAS2011. Ongoing: LSST DC3b PT1.2



ImSim: LSST lensed quasars

No subtraction
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Lens completeness driven by IQ

» Basic object detection with default SExtractor, measure fraction
of systems with 2 or more quasar images detected

* “Lucky imaging”: 20% complete with no lens subtraction
* Repeat with LSST DM source detector in PT1.2 - Lupton’s talk
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Application: PS1 lensed quasars
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* Lucky imaging with PS1: example shown is known Iens” |
H1413+117 observed in grizY since 2009

* QSO identification depends on variability as well as colour:
joint modelling of data at all epochs in all filters is
required. Testing on ImSim mock lenses continues...
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Conclusions: strong lens analysis

 Variable observing conditions are a plus for strong lens
detection - occasionally we get a high resolution image

* Lens candidacy requires a lens and source model: images
must be of plausibly equal colour, with lightcurves consistent
with being equal but offset (modulo microlensing): joint
modelling of data at all epochs and in all filters is required.
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Conclusions: strong lens analysis

 Variable observing conditions are a plus for strong lens
detection - occasionally we get a high resolution image

* Lens candidacy requires a lens and source model: images
must be of plausibly equal colour, with lightcurves consistent
with being equal but offset (modulo microlensing): joint
modelling of data at all epochs and in all filters is required.

What do we gain from the simulations?

« Strong lenses are rare: we only know a few dozen bright
systems in the PS1 3pi survey area, and they were selected in
a very different way

 The ImSim systems have realistically faint images and lenses,
allowing us to test detection of as yet unseen objects
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Weak gravitational lensing

Weak
lensing

/:ll \\\ L -~ )QI‘
“~ s d \\\I':’ I e —— 4

/ - N . RN A . ) -
1 . ',
Y —-n. R P y ’ . o X £
s -— - . frs
\2.‘. ‘g * W
-\ -

-

L4
~r

’ \\ \}\IJ /

.....

-1

P |

-ov—l‘-\|~ .

No lensing

- -
-
- - -
(> ,4-- - - » -

-

Vb

[ S

.=
-
--.-'—-'4
) -

v -

\\|-| .........

llllllll - - \\\\\
s VNSNS N\~ /Il/ll‘-\\\\\l A NS s -

. N S——— f.‘ lll///‘\l\\\ ' o ~ lri8w - Aim-mas

"S- \‘ NN\~ e~y \\\.‘i\..\! -y
ll\l’.l{l\ |llrl/I/ - \N “ -sv1) -
- L i onsayp L I e s PISEN .\‘\.
/' B e e I et 4 \ o"\h - IIQ\V\ '
N L R ... - . - .u\\l\ll~o.\l:l.l_s
.-wu.-al(.. NNy .0\../’-\\._”‘-..
B I I e St Q‘ '\.-l/la.ﬁb\{.... -
Inll‘ul:. e LR "\\l/ll/l.l\\.\. . N
- S N et Ny g S N m— o7 ot g oy .- I‘,l\\ - ... .lla Ne
- N mAN. N - r. L AR NS -

“\\rll.l

— , - II ‘\lv’ ~. - * ‘o,lnh\-.'!'\\l
lml.- Il\l\l’."..lfll\. T IR R YRS
- -.'\}'llﬂv‘ P -~ SS s g N

Gravitating mass is revealed by the weak, tangential distortion and

alignment of images of background galaxies

The Point Spread Function (PSF) causes ~10 times stronger

- the PSF at each galaxy position needs to be

first estimated and then deconvolved at high accuracy

7

correlated ellipticity

13

* "PSF interpolation” is an image reconstruction problem
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PSF anisotropy
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Focus too low Focus (roughly) correct Focus too high

* Images of stars provide sparse, noisy PSF ellipticity data

 Instrumental PSF ellipticity (typically) varies on large (whole field)
angular scales, and the patterns repeat: low order polynomials work
well, and/or all images can be used to densely sample a set of basis

functions to model the underlying ellipticity field (Jarvis & Jain 2008)
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PSF anisotropy
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Focus too low Focus (roughly) correct Focus too high

* Images of stars provide sparse, noisy PSF ellipticity data

 Instrumental PSF ellipticity (typically) varies on large (whole field)
angular scales, and the patterns repeat: low order polynomials work
well, and/or all images can be used to densely sample a set of basis

functions to model the underlying ellipticity field (Jarvis & Jain 2008)
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Ellipticity correlation functions

_Fuetal 2008, CFHTLS
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» After PSF correction, (complex) galaxy ellipticity is an
estimator for the local gravitational shear: the shear correlation
function can be predicted from cosmological models, and fitted
to the observed ellipticity correlation function
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What about the atmosphere?

* Wittman (2005) measured the stars in a small set of 10-30s
images from Subaru, and found a residual PSF ellipticity
correlation at the 1-3x10-° level on scales of 1 arcmin

« Early simulations by de Vries et al (2007) using frozen
Kolmogorov phase screens predicted significant PSF ellipticity
due to atmospheric turbulence, that decreases with sqrt(t)

 Heymans et al (2011) used archival CFHT images taken over
a wide range of observing epochs, exposure times and
conditions, and confirmed these results, noting that:

“on these angular scales the high spatial frequency of the
atmospheric aberration is too rapid to model with a typical
stellar density and standard methods”

* Use simulations to develop new PSF interpolation
methods that can cope with atmospheric effects

15



The LSST ImSim PSF

 Chihway Chang (KIPAC) is studying the LSST PSF - and its
associated weak lensing systematic errors - using ImSim

 Chang, Marshall et al (2011a, 2011b), Jernigan et al (2011), all in prep
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LSST ImSim - does it match the data?
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* Measure stars in real (purple) and simulated (grey/green) 15s CFHT
chip images, subtract 2nd order polynomial model (for instrument)

 Ellipticity correlation functions match well in normalisation, slope
and anti-correlation regime. Simulations predict large scatter...
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Kernel

Visible

PSFent

Aim: reconstruct maps of ellipticity
components ¢; and ¢;

Star shape data are sparse and noisy.
Inference: Gaussian likelihood and (positive/
negative) Maximum Entropy prior, assigned
to 7 hidden images

Each hidden image is convolved with a
different Gaussian kernel, then summed

Flexible, multi-scale: allows high frequency
spatial variations to be modelled

Different scales’ relative weight is simulation-
driven: computed from rms of hidden images
in reconstructions of high S/N mock starfields.
Weight ~ kernel mass

Small scale structure only appears when the
data demand it!
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» PSFent

Kernel [Visible
® * Aim: reconstruct maps of ellipticity

components ¢; and ¢;

S . » Star shape data are sparse and noisy.
5 68 Inference: Gaussian likelihood and (positive/
negative) Maximum Entropy prior, assigned

wE to 7 hidden images
w5 41 « Each hidden image is convolved with a

oy different Gaussian kernel, then summed

* Flexible, multi-scale: allows high frequency
spatial variations to be modelled

Different scales’ relative weight is simulation-
driven: computed from rms of hidden images

In reconstructions of high S/N mock starfields.
Weight ~ kernel mass

« Small scale structure only appears when the
data demand it!
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star/arcmin?

Boxcar
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WL Systematics

* Combining ~1000 exposures, LSST statistical errors should be very small
- need to compare residual correlations from PSF interpolation with these

« Key quantity is mean square residual additive systematic error defined by
Amara & Refregier (2008): 02sys < 1077 for LSST, or 02sys,psr < 4x10-8

« Simulated data allows this quantity to be estimated directly, as integral
under residual (reconstruction - truth) ellipticity correlation function:

t 3 ™ P ——
. ’.

Median of 100 exposures, ]

104 | 1 star/arcmin”$ Single exposure o2sys,psr
10-5_‘;*8“\;‘;:‘~~ ) | Polynomial: 10x10
% | FEn¢ “”“\\"-é:\ ,f‘\ | Boxcar: 6x10-
‘ Y. &y AR Target: 4x10
VARTAL: PSFent: 2x10-
s Il

Alarcmin)
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WL Systematics

* Combining ~1000 exposures, LSST statistical errors should be very small
- need to compare residual correlations from PSF interpolation with these

« Key quantity is mean square residual additive systematic error defined by
Amara & Refregier (2008): 02sys < 1077 for LSST, or 02sys,psr < 4x10-8

« Simulated data allows this quantity to be estimated directly, as integral
under residual (reconstruction - truth) ellipticity correlation function:

nenonea | [ Single @XpOSUre o2sys,pse
| Polynomial: 10x105

to} i Boxcar: 6x10-
S\ || Target: 4x10-
it i PSFent: 2x10-2

1Y
 0%syspsescales as 1/Nexp, as
shown with simulations
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WL Systematics
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Atmospheric PSFs: conclusions

 PSFent provides the factor of 5

improvement required (over Tsys, PSF
standard techniques) to reach BT " [e—s psren
the required, single exposure, » o |
residual systematic limit of taxget Jovel (.., ||
O'Zsys,PSF < 4X1O'5, in all fields T ~ |
with star density > 0.5 arcmin-2 RN T

» In these fields, PSF interpolation S & i
will not be the dominant source ~ 4X1 0'5"'\'*‘{\ """" L +
of error in the shear correlation by 9 gt
function at arcminute scales. An RS
additional factor of two will be o 5/;, :\‘\‘# |
required to push to half this S T = ]
density. 0.25 1 4

star/arcmin?
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Atmospheric PSFs: conclusions
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Atmospheric PSFs: conclusions

What did we gain from the simulations?

(1) A comprehensive sampling of observing conditions
(going beyond previous, smaller observational datasets
with less extreme “weather” - although notice the crucial
CFHT validation step)
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Thanks!
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Questions

Q. Do the PSF shape parameters need to be interpolated in
other dimensions? Llke colour, brightness etc?

A. Maybe, yes - current weak lensing analyses do this at some
level. You could imagine interpolating spatially in bins of X, or as
a function of X.

Q. What about using PCA?

A. The whole problem is one of finding the optimal basis set for
reconstructing the ellipticity maps, and PCA is one way of
deriving a basis set. Would a simulation defined set of PCs make
a good basis set? The problem is that the atmospheric maps are
like noise fields, so it’s unlikely that a simple way of reducing the
size of the PC set would be obvious. PCs, Fourier modes and so
on are just rotations from real space - the key is to reduce the
number of degrees of freedom in a physically motivated way. We
do it by deriving a MaxEnt prior on our hidden spaces -
something similar could be done for other basis sets.
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Questions

Q. PSFent sounds horribly slow. Is it?

A. It takes ~10s to reconstruct the 2 ellipticity maps for each chip
Image on a standard desktop workstation, so about 200 would
be needed to keep up with the LSST data rate, today. Moore’s
Law will help, but we will undoubtedly need to interpolate more
than just two PSF shape parameters.

Q. What about PSF size?

A. We have not tried this yet, but | would be surprised if we
cannot interpolate that in the same way: PSFent is so flexible.
Whether the residual systematics due to PSF size interpolation
average down in the same way is to be investigated...
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