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Turbulence profile sequence, Paranal 



The Need for Simulations of 
Optical Turbulence 

•  Adaptive optics: system design and optimisation, 
performance modelling 
–  Complex noise propagation: analytic solutions are 

not always available… 
•  Model anisoplanatism, fitting error, WFS noise etc.   

Diffraction Seeing Noise 



Computer  Simulation of Seeing 
The Usual Assumptions: 
 

1.  Thin layers, geometric propagation 
2.  Kolmogorov statistics for phase aberrations 
3.  Taylor approximation (fixed, translating pattern) 
4.  (Weak turbulence - neglect scintillation effects) 



Computer  Simulation of Seeing 
•  Creating a random turbulent ‘phase screen’ 

•  Power spectrum of phase aberrations after propagation 
through Kolmogorov turbulence: 

Φ(k) = 0.0229 r0
5/3 k-11/3 

 

1.  Create a 2d array of random numbers (normal distribution, 
mean = 0, variance =1) 

2.  Multiply by √Φ(k) 
3.  Fourier transform to get an array of ‘phase’ fluctuations 

with the correct spatial structure function (almost). 



Computer  Simulation of Seeing 

Kolmogorov ‘phase’ screen 

Simulated Wavefront- 
sensor pattern 



•  Creating a speckle image: 
The instantaneous PSF is the squared Fourier transform of the 

(complex aperture) function T (ρ) : 
I(x) = F2[T(ρ)]   

 
1.  Create a complex array to contain T (ρ) = Aeiφ(ρ) 
2.  Set phase of T (ρ) equal to values from Kolmogorov phase screen 
3.  Amplitude of T is constant within a aperture (zero outside) 
4.  FFT2 gives speckle image 
5.  Now move the aperture across the phase screen to simulate wind-

blown motion of the turbulence… 
 

Computer  Simulation of Seeing 



AO Numerical Simulations 
•  Monte Carlo simulations of AO typically make 

use of this basic method, but have become 
highly complex:  

–  Multiple WFS and science ‘light paths’, e.g. MOAO 
–  NGS and LGS propagation 
–  WFS noise, DM hysteresis, etc… 
–  8m/ELT scale AO -> Parallel programming 



What is the Atmosphere Really Like ?  

1.  Thin Layers – incl. surface layer  
•  Is isoplanatism modeled  correctly ? 

 
2.  Kolmogorov statistics (spatial structure) 

•  Is DM fitting error modeled correctly ? 

3.  Taylor approximation ? 
•  Are temporal effects modeled correctly ? 

  

 



•  Measure Cn
2(h), + Vw(h) if possible 

•  Measure all altitudes with high resolution 
•  Well calibrated (turbulence strength, altitude) 
•  Good time resolution (~1  minute) 
•  Real-time data 
•  Automated / robotic 
•  Portable (re-locatable) for site testing 
•  Cheap 

(Ideal) Requirements for a Turbulence Profiler: 
Turbulence Characterisation 



Turbulence Profiling: Methods 

Micro-Thermal Balloon Probe 
Measures C2

T(h) 

Acoustic Ranging (SODAR) 



MASS: Scintillation Spatial Structure  

Image: http://www.ctio.noao.edu/~atokovin/profiler/index.html 
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Optical Crossed-Beams Methods 
Recipe: 
1.  Observe a double star 
2.   Measure something at the 

ground… scintillation pattern, 
WFS centroids 

3.   Recover Cn
2(h) from the time-

averaged cross-covariance of 
the data  

 

e.g. SCIDAR, LOLAS,  SLODAR, 
Co-SLIDAR …. 



Intensity Auto-Correlation 
(Time-Averaged) 

Double Star 
Intensity Pattern 

SCIDAR (SCIntillation Detection And Ranging) 

Altitude resolution determined by double star separation and 
Fresnel zone size (roughly) 



SLODAR (SLOpe Detection And Ranging) 

•  Shack-Hartmann wavefront sensor 
•  Recover Cn

2(h) from the time-
averaged cross-covariance of the 
WFS data  

 

Altitude resolution determined by double star separation and 
Sub-apertures size (roughly) 



θ 

δh 

SLODAR Altitude Sampling 

δh ∝ d/θ 
 

d  (WFS sub-aperture size) 



δh 

Higher Altitude Total 

SLODAR Altitude Sampling: 
Ground-Layer profiling 



SLODAR Turbulence Profile Sequence (Paranal) 

Altitude resolution varies with zenith angle 

Surface  
Layer 

Integrated 
Higher  
Turbulence 



SLODAR: Turbulent Layer Velocities 

• Movie shows the spatial cross-
covariance with increasing time 
offset. 

• Motion of peaks => layer velocity 
(with altitude). 

Altitude 



SLODAR at La Palma 
•  Support CANARY MOAO 

demonstrator at WHT 

•  0.5m telescope  

•  ‘Whole’ atmosphere 
profiling (up to ~10km) 

•  Fully automated 



SLODAR Site Monitor, ESO Paranal, Chile 



Surface-Layer SLODAR, Paranal   

Photo: Tim Butterley 



1.  Thin Layers ? 
 
Surface layer 
 

How Accurate are the Usual Assumptions ? 

Turbulence profile sequence, Paranal 



Paranal: Surface Layer Turbulence Profile 

DIMM 

SLODAR 

VLT ELT 



Understanding VLT (UT) Seeing 

SLODAR total above 30m  
versus UT shack-Hartmann seeing.  

Paranal DIMM (at 5m)  
versus UT seeing 



Ground-Layer Turbulence: Does GLAO work ?"

Image: www.eso.org 

Thin surface layer –  
 no need for GLAO 

Thicker surface layer – 
GLAO is very effective and 
has a huge field of view 

How much turbulence does 
the telescope create ? 



1.  Thin Layers ?  High layers 

How Accurate are the Usual Assumptions ? 

Balloon sounding turbulence profile,  
La Palma, Vertical resolution ~50m  
Vernini et al, AA 204, 311, 1994 

Very little high 
resolution profile 
data available (e.g. 
balloon soundings) 



1.  Thin Layers ?   High layers 
How Accurate are the Usual Assumptions ? 

SCIDAR turbulence profile, La Palma 
Vertical resolution ~ 500m  
Kluckers et al, A&AS 130, 141, 1998 

Lots of low 
resolution profile 
data available (e.g. 
SCIDAR) 



How Accurate are the Usual Assumptions ? 

1.  Thin Layers ?  High layers 

•  Implications: depends on the field of view… 

•  Individual layers are typically unresolved in low 
resolution data (δh ~ 500m). No implications for 
modeling AO with small field of view <1arcmin ? 

•  Higher resolution data, δh <100m, may be critical 
for larger FOV, e.g.  MOAO / EAGLE (5 arcmin) 



2. Kolmogorov statistics ? 

Kolmogorov spatial spectrum: 

Φ(k) = 0.0229 r0
5/3 k-β

,     β = 11/3 
 
Surface Layer / ‘local turbulence’:  

Often apparently measure β < 11/3, mainly in low wind speeds	


(Can also model as a small ‘outer scale of turbulence’) 
 

BUT: observed β < 11/3  results because, in light winds, 
larger spatial scales are not properly sampled (unless our 
sampling time is very long…) 

How Accurate are the Usual Assumptions ? 



Beware of Enforcing Positivity !  

Non-Kolmogorov Response 

Negative ‘side-lobe’ in 
restored turbulence profile  

SLODAR response functions 



Non-Kolmogorov Response 

‘Fix’: Include additional β <11/3 term at the ground    



Non-Kolmogorov Response 
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Ground-level wind speed 



How Accurate are the Usual Assumptions ? 

•  Turbulence results from wind-shear => we 
should expect velocity dispersion 

•  High altitude- and time- resolution data 
needed… 

Taylor approximation  
 

High-resolution SCIDAR 
data, Nordic Optical 
Telescope, La Palma 
 
Images: Harry Shepherd 

Δt = 0ms Δt = 50ms 



1.  Thin Layers – incl. surface layer  
•  Surface-Layer structure is critical 
•  High layers: may break down for very large 

field of view ? 
 
2.  Kolmogorov statistics (spatial structure) 

•  Probably OK, but: 
•  Need to model layer velocities correctly 

(e.g. range of surface wind-speeds) 

3.  Taylor approximation ? 
•  More high-resolution profile data needed  

  

 

How Accurate are the Usual Assumptions ? 

✗ 
✓ (?) 

✓  

✓ (?) 



Key Issues for Profiling 

•  Surface-Layer Characterization 
•  Correct velocity structure 

– Effect of low winds (esp. surface layer) 
– Wind-shear 

•  Accurate Altitudes of (High) Layers:  
– Requirements for MCAO with ELT:  <100m ? 
– How to do this (for the whole profile) ? 


