Characterisation and Simulation of Atmospheric Seeing

Richard Wilson, Tim Butterley, Harry Shepherd CfAI, Durham University, UK

SLODAR Turbulence Profiler ESO Paranal Observatory

Turbulence profile sequence, Paranal

The Need for Simulations of Optical Turbulence

- Adaptive optics: system design and optimisation, performance modelling
 - Complex noise propagation: analytic solutions are not always available...
- Model anisoplanatism, fitting error, WFS noise etc.

The Usual Assumptions:

- 1. Thin layers, geometric propagation
- 2. Kolmogorov statistics for phase aberrations
- 3. Taylor approximation (fixed, translating pattern)
- 4. (Weak turbulence neglect scintillation effects)

- Creating a random turbulent 'phase screen'
- Power spectrum of phase aberrations after propagation through Kolmogorov turbulence:

 $\Phi(\underline{k}) = 0.0229 \ \Gamma_0^{5/3} \underline{k}^{-11/3}$

- Create a 2d array of random numbers (normal distribution, mean = 0, variance =1)
- 2. Multiply by $\sqrt{\Phi(\underline{k})}$
- 3. Fourier transform to get an array of 'phase' fluctuations with the correct spatial structure function (almost).

Simulated Wavefrontsensor pattern

Kolmogorov 'phase' screen

Creating a speckle image:

The instantaneous PSF is the squared Fourier transform of the (complex aperture) function T (ρ) :

 $\mathsf{I}(\mathsf{x}) = \mathbf{F^2}[\mathsf{T}(\rho)]$

- 1. Create a complex array to contain T (ρ) = Ae^{i $\phi(\rho)$}
- 2. Set phase of T (ρ) equal to values from Kolmogorov phase screen
- 3. Amplitude of T is constant within a aperture (zero outside)
- 4. FFT² gives speckle image
- 5. Now move the aperture across the phase screen to simulate windblown motion of the turbulence...

AO Numerical Simulations

- Monte Carlo simulations of AO typically make use of this basic method, but have become highly complex:
 - Multiple WFS and science 'light paths', e.g. MOAO
 - NGS and LGS propagation
 - WFS noise, DM hysteresis, etc...
 - 8m/ELT scale AO -> Parallel programming

What is the Atmosphere Really Like ?

- 1. Thin Layers incl. surface layer
 - Is isoplanatism modeled correctly ?
- 2. Kolmogorov statistics (spatial structure)
 - Is DM fitting error modeled correctly ?
- 3. Taylor approximation ?
 - Are temporal effects modeled correctly ?

Turbulence Characterisation (Ideal) Requirements for a Turbulence Profiler:

- Measure $C_n^2(h)$, + $V_w(h)$ if possible
- Measure all altitudes with high resolution
- Well calibrated (turbulence strength, altitude)
- Good time resolution (~1 minute)
- Real-time data
- Automated / robotic
- Portable (re-locatable) for site testing
- Cheap

Turbulence Profiling: Methods

Acoustic Ranging (SODAR)

Micro-Thermal Balloon Probe Measures $C^{2}_{T}(h)$

MASS: Scintillation Spatial Structure

x [pixels]

Optical Crossed-Beams Methods

Recipe:

- 1. Observe a double star
- Measure something at the ground... scintillation pattern, WFS centroids
- Recover C_n²(h) from the timeaveraged cross-covariance of the data

e.g. SCIDAR, LOLAS, SLODAR, Co-SLIDAR

SCIDAR (SCIntillation Detection And Ranging)

Double Star Intensity Pattern

Intensity Auto-Correlation (Time-Averaged)

Altitude resolution determined by double star separation and Fresnel zone size (roughly)

SLODAR (SLOpe Detection And Ranging)

- Shack-Hartmann wavefront sensor
- Recover $C_n^2(h)$ from the timeaveraged cross-covariance of the WFS data

Altitude resolution determined by double star separation and Sub-apertures size (roughly)

<u>SLODAR Altitude Sampling:</u> <u>Ground-Layer profiling</u>

SLODAR Turbulence Profile Sequence (Paranal)

Altitude resolution varies with zenith angle

SLODAR: Turbulent Layer Velocities

- Movie shows the spatial crosscovariance with increasing time offset.
- Motion of peaks => layer velocity (with altitude).

SLODAR at La Palma

- Support CANARY MOAO demonstrator at WHT
- 0.5m telescope
- 'Whole' atmosphere profiling (up to ~10km)
- Fully automated

SLODAR Site Monitor, ESO Paranal, Chile

Surface-Layer SLODAR, Paranal

How Accurate are the Usual Assumptions ?

1. Thin Layers ?

Turbulence profile sequence, Paranal

Paranal: Surface Layer Turbulence Profile

Understanding VLT (UT) Seeing

SLODAR total above 30m versus UT shack-Hartmann seeing.

Paranal DIMM (at 5m) versus UT seeing

Ground-Layer Turbulence: Does GLAO work ?

Thin surface layer – no need for GLAO

Thicker surface layer – GLAO is very effective and has a huge field of view

How much turbulence does the telescope create ?

Image: www.eso.org

How Accurate are the Usual Assumptions ?

1. Thin Layers ? High layers

Very little high resolution profile data available (e.g. balloon soundings)

Balloon sounding turbulence profile, La Palma, Vertical resolution ~50m Vernini et al, AA 204, 311, 1994

How Accurate are the Usual Assumptions ? 1. Thin Layers ? High layers

Lots of low resolution profile data available (e.g. SCIDAR)

Kluckers et al, A&AS 130, 141, 1998

How Accurate are the Usual Assumptions ?

1. Thin Layers ? High layers

- Implications: depends on the field of view...
- Individual layers are typically unresolved in low resolution data (δh ~ 500m). No implications for modeling AO with small field of view <1arcmin ?
- Higher resolution data, δh <100m, may be critical for larger FOV, e.g. MOAO / EAGLE (5 arcmin)

How Accurate are the Usual Assumptions ?

2. Kolmogorov statistics ?

Kolmogorov spatial spectrum:

$$\Phi(\underline{k}) = 0.0229 \Gamma_0^{5/3} \underline{k}^{-\beta}, \quad \beta = 11/3$$

Surface Layer / 'local turbulence':

Often apparently measure $\beta < 11/3$, mainly in low wind speeds (Can also model as a small 'outer scale of turbulence')

BUT: observed $\beta < 11/3$ results because, in light winds, larger spatial scales are not properly sampled (unless our sampling time is very long...)

Non-Kolmogorov Response

Beware of Enforcing Positivity !

Non-Kolmogorov Response

SLODAR profile plot for 18/02/2010

'Fix': Include additional $\beta < 11/3$ term at the ground

Non-Kolmogorov Response

How Accurate are the Usual Assumptions ?

Taylor approximation

- Turbulence results from wind-shear => we should expect velocity dispersion
- High altitude- and time- resolution data needed...

High-resolution SCIDAR data, Nordic Optical Telescope, La Palma

Images: Harry Shepherd

 $\Delta t = 0 ms$ $\Delta t = 50 ms$

How Accurate are the Usual Assumptions ?

- 1. Thin Layers incl. surface layer
- Surface-Layer structure is critical
- (?) High layers: may break down for very large field of view ?
 - 2. Kolmogorov statistics (spatial structure)
- Probably OK, but:
 - Need to model layer velocities correctly (e.g. range of surface wind-speeds)
 - 3. Taylor approximation ?
- (?) More high-resolution profile data needed

Key Issues for Profiling

- Surface-Layer Characterization
- Correct velocity structure
 - Effect of low winds (esp. surface layer)
 - Wind-shear
- Accurate Altitudes of (High) Layers:
 - Requirements for MCAO with ELT: <100m ?</p>
 - How to do this (for the whole profile)?