Gaia, the universe in 3D: an overview of the mission

X. Luri, ICCUB/IEEC
Outline of the talk

• Gaia’s context in ESA

• The Gaia mission
 • Scientific goals
 • Spacecraft and instruments
 • Data reduction: the DPAC

• The Gaia simulator
 • Simulations in DPAC
 • Simulator structure
 • The Universe Model and the Instrument Model
 • Data generators
 • Lessons learnt
 • Examples
All ESA’s member states participate in its activities and in a series of common space science programs (mandatory programs).

ESA’s areas of work:

- Earth’s space environment
- Sun-Earth interaction
- Interplanetary medium
- The Moon and the planets
- The stars and the universe
Cosmic vision
2002-2012

Gaia, the universe in 3D: an overview of the mission
The Gaia mission
Gaia history

• Gaia is the successor of the Hipparcos satellite, the first space astrometry mission. The Hipparcos catalogue is today an essential reference in astronomy and has led to more than 1600 refereed publications since 1996

 http://www.rssd.esa.int/index.php?project=HIPPARCOS&page=science_results

• Gaia is the Cornerstone 6 in the frame of ESA’s “Horizon 2000+” program. It was approved in 2001 and its launch is scheduled for 2013.
Gaia, the universe in 3D: an overview of the mission

- **1998-2000**: proposal to ESA
- **2001**: ESA selection
- **2001-03**: preparatory studies
 - Mission feasibility
 - Definition of the scientific goals
- **2005-2006**: Phase B (detailed design)
- **2006-2012**: Phase C/D (construction)
- **Mid-2013**: launch
- **2013-2018**: nominal operation (+1yr extended)
- **2013-2021**: data reduction
Main scientific goals

Structure and kinematics of our galaxy:

- Form and rotation of the bulge, disc and halo
- Internal motion of the regions of stellar formation, clusters, etc.
- Nature of the spiral arms and the "warp"
- Spatial motion of all the satellite systems satellite of the Galaxy

Stellar populations:

- Physical characteristics of all the galactic components
- Initial mass function, binary masses, chemical evolution
- History of the stellar formation

Tests of the galactic formation:

- Dynamic determination of the dark mass distribution
- Reconstruction of "mergers" and history of accretion

⇒ Origin, Formation and evolution of the galaxy
Additional goals

- Stellar astrophysics
- Multiple stellar systems
- Solar system objects
- Extrasolar planets
- Fundamental physics (test of general relativity)
- Galaxies & QSOs
Gaia, the universe in 3D: an overview of the mission

Gaia in a nutshell

- ESA-only mission (prime EADS Astrium SAS)
- Launch date: June 2013 (schedule without margin)
- Launcher: Soyuz–Fregat from CSG (Guiana)
- Orbit: L2 Lissajous orbit (1.5 million km from Earth)
- Lifetime: 5 years (1 year potential extension)
- Ground stations: Cebreros + New Norcia + Malargüe
- Downlink rate: 4 – 8 Mbps (~50 GB day⁻¹)

- Science data processing by DPAC (400+ scientists)
- Science exploitation by GREAT (ESF + EU-FP7)
- Final catalogue ~2021 (archive preparation by GAP)
- Intermediate catalogues under definition (~2016 + ...)
- Science alerts released immediately
- No proprietary data rights

Figure courtesy EADS Astrium and Starsem
Gaia: an astrometric mission

Will provide the most complete 3D survey of objects in our Galaxy (and beyond)

- $>10^9$ objects
- **Complete up to 20th magnitude**
- Positions, velocities and parallaxes
 - Nominal precision (15th mag): \sim25\textmu as
- Spectrophotometry
- Spectroscopy and radial velocities (G<16)
- No input catalogue \rightarrow unbiased survey
Gaia, the universe in 3D: an overview of the mission

$>10^9$ objects
About 1% of the Milky Way! → statistically significant galactic census
Gaia, the universe in 3D: an overview of the mission

Gaia principles

Two telescopes scanning the sky
Scanning law; provides full sky coverage
Multiple pairs of instantaneous observations provide an all-sky grid of angular measurements. A global reduction process converts them into global astrometry: positions, parallaxes and proper motions.

Spectrophotometric measurements provide physical parameters for all the observed objects.

Spectroscopic measurements provide radial velocities.
Payload Module (PLM)

- Two telescopes with 1.45 × 0.50 m² primary mirrors
- Rotation axis (6 h), slowly precessing (63 days)
- Figure courtesy EADS Astrium
Gaia, the universe in 3D: an overview of the mission

Focal plane

106 CCDs, 938 million pixels, 2800 cm²

104.26 cm

42.35 cm

Sky Mapper CCDs

Astrometric Field CCDs

Image motion

Radial Velocity Spectrometer CCDs

Red Photometer CCDs

Blu Photometer CCDs

Sky Mapper Berkeley

Sky Mapper Hone

Sky Mapper More
Time-delayed integration
End-of-life parallax errors

1. $6 < G < 12$: bright-star regime (calibration errors, CCD saturation)
2. $12 < G < 20$: photon-noise regime, with sky-background noise and electronic noise setting in around $G \sim 20$ mag

Figure courtesy J. de Bruijne ESA
Parallax statistics

Data, based on GUMS, courtesy Xavier Luri and Lennart Lindegren
Photometric passbands: G, BP & RP
Transit-level integrated photometry

Sky-average end-of-mission number of transits ~ 70

Figure courtesy J. de Bruijne ESA
Transit-level integrated photometry

Sky-average end-of-mission number of transits ~ 70

Figure courtesy J. de Bruijne ESA
Gaia, the universe in 3D: an overview of the mission

BP/RP spectrophotometric data

Illustrative BP/RP spectra for 14 solar-metallicity stars at $G = 15$ mag (2010A&A...523A..48J)

Goals: astrophysical parameters, for instance extinction within ~0.1 mag, surface gravity within ~0.2 dex, metallicity within ~0.2 dex, and effective temperature within ~200 K (2010MNRAS.403...96B)

Figure courtesy J. de Bruijne ESA
Gaia, the universe in 3D: an overview of the mission

End-of-life radial velocity errors

Figure courtesy J. de Bruijne ESA
Launch pad is ready

Figure courtesy ESA and Arianespace
Gaia, the universe in 3D: an overview of the mission

Spacecraft is getting there ...

“Naked view” of Payload Module (instrument)

Service Module (support functions)

Figure courtesy EADS Astrium
Gaia, the universe in 3D: an overview of the mission

Service Module: testing of units

Figure courtesy EADS Astrium
Deployable Sunshield Assembly (DSA)
Gaia, the universe in 3D: an overview of the mission

Torus and bipods are ready

Figure courtesy RUAG, Boostec, and EADS Astrium
Nine of the ten mirrors are ready
Seven mirrors have been integrated
Focal-Plane-Assembly (FPA) integration

All CCDs are ready and 80/106 have been mounted.

Figure courtesy EADS Astrium
BP and RP prisms are ready

Figure courtesy SESO, Selex Galileo, and EADS Astrium
Gaia, the universe in 3D: an overview of the mission

RVS spectrograph is being integrated ...

Figure courtesy IOF, Selex Galileo, Boostec, and EADS Astrium
The Gaia data reduction
The Data Processing and Analysis Consortium:

- Formed to answer the Announcement of Opportunity (AO) for Gaia data processing.
- Involves a large number of European institutes and observatories (>400 people).
- The science community must fund the majority of the Gaia processing (not ESA).
Gaia, the universe in 3D: an overview of the mission

DPAC organigram

Coordination units

Data processing centers
DPAC coordination units

- CU1: System Architecture
- CU2: Data Simulations
 - X. Luri (manager)
- CU3: Core Processing
- CU4: Object Processing
- CU5: Photometric Processing
- CU6: Spectroscopic Processing
- CU7: Variability Processing
- CU8: Astrophysical Parameters
- CU9: Catalogue Access
The Gaia simulator
The CU2

The CU2 task is to cover the simulation needs for the work of other CUs, ensuring that reliable data simulations are available for the development and testing of the various stages of the data processing development.

Note: before the creation of the CU2 the UB and ObsPM had already been working for 5 years on the generation of Gaia simulations for instrument design and data reduction feasibility demonstration.
The CU2 operates in close coordination with the rest of the DPAC:

- Requests for simulated data are sent in each cycle by the different CUs in DPAC.
- The development of the different modules of the simulator is jointly agreed, taking into account each CU's needs, their global priorities within the overall consortium, the availability of the simulation models (which can depend on industrial tests or other CU accuracy models) and the available CU2 manpower.
Key point:

we are presently serving the simulation needs of a data reduction consortium. We are not doing simulations for instrument design (although we did in the past) and we are just now starting to provide simulations to prepare the science exploitation (simulated Gaia catalogue to be released in 2012).

This has set our priorities and design choices up to now.
We are part of a larger development effort:

• We follow common coding standards (document in LL), use common libraries (GaiaTools, GPDB) and interfaces (gbin format)

• We are subject to the 6-month development cycle agreed in the consortium (an updated version of the simulator every 6 months)
We have not been able to cover absolutely all the needs:

- CTI simulator
- CU7 using real catalogues for variable studies
Complexity:

The Gaia simulator is (five) four simulators in one:

- (The spacecraft)
- The Sky mapper
- The astrometric field
- The spectrophotometer BP/RP
- The Radial Velocity Spectrooscope

It’s like four different interlinked instruments
CU2 membership

Core team
5 S/W engineers
8 scientists

~20 active members

~50 just members
CU2 structure

DU1 Coordination & management

DU3 Universe model

DU2 Software engineering
 Data Generators
 DU 5 - GASS
 DU 6 - GIBIS
 DU 7 - GOG

DU4 Spacecraft & Instrument models
Cu2 product tree

Gaia Simulato

GaiaSimu library
- Universe Model
- Instrument Model
- Common tools

GASS
- Simulated telemetry

GIBIS
- Simulated images

GOG
- Simulated MDB data
The GaiaSimu library

GaiaSimu library: this library is the basis for the development of the Gaia simulator. It contains the common models used by the data generators to produce simulations of the Gaia observations. It is composed of three parts:

1. The instrument model: models of the Gaia instruments and elements of the spacecraft
2. The universe model: model of the objects in the sky that Gaia will observe, with all its physical characteristics
3. Common tools: a toolbox for use throughout the simulator
Gaia, the universe in 3D: an overview of the mission

The Universe Model

Solar System
- Sun, Earth, Moon (not for observation)
- Planets and satellites
- Minor bodies
 - Asteroids
 - Comets
 - Kuiper belt
- Other components
 - Zodiacal light
 - Solar wind
 - Etc.

Our Galaxy
- Field stars
 - “Normal”
 - Multiple systems
 - Variable stars
- Stellar clusters
 - Open clusters
 - Globular clusters
 - OB associations
 - Stellar streams
- Extended objects
 - Planetary nebula
 - HII regions
 - Reflection nebula
- Other components
 - Galactic diffuse light
 - Extrasolar planets

Extragalactic objects
- Galaxies with resolved structure
 - Field stars
 - Stellar clusters
 - Surface brightness
 - Supernovae
- Galaxies with unresolved structure
 - Surface brightness
 - Supernovae
- QSO
- Other components
 - Diffuse extragalactic light
Gaia, the universe in 3D: an overview of the mission

The Instrument Model
The Data Generators

The simulator comprises three data generators, software components that use the GaiaSimu library to produce specific types of data for the DPAC. The three data generators are:

- The GAia System Simulator (GASS)
- The Gaia Instrument and Basic Image Simulator (GIBIS)
- The Gaia Object Generator (GOG)
Gaia, the universe in 3D: an overview of the mission

GASS

This data generator provides simulations of the telemetry stream of the mission based on some simplifications of the instrument and Universe models allowing a large amount of data to be simulated over a significant period of time.

GASS provides realistic data for:

- Predictions to be used for mission design.
- Filling of test databases
- Testing of core reduction algorithms
- Evaluation of mission performances, in particular for peculiar objects (binary stars, NEO’s, extrasolar planets,...)
Gaia, the universe in 3D: an overview of the mission

GASS is run in large computer clusters and specially at the Mare Nostrum supercomputer.
GIBIS

This data generator provides simulations of the data at the pixel level. The resulting simulations are as realistic as possible and restricted, due to computing time limitations, to a region of a sky over a short period of time (~1 hour).

GIBIS provides realistic CCD images for:

- Instrument design
- PDHE design
- Detection & selection algorithm development
- Scientific mission design (e.g. RVS)
- Detailed analysis of reduction algorithms
GIBIS is available as a web service and is also run in batch mode in computer clusters.
GOG

This data generator provides simulations of number counts and lists of observable objects from the Universe model and, for a given source or a collection of sources, simulations of intermediate and end-of-mission Gaia data.

GOG aims to simulating the contents of the MDB at any stage of the data processing.
GOG is available as a web service and is also run in batch mode in computer clusters.
Summary

The Gaia Simulator code amounts today to more than **100,000 lines of code** (+DPAC libraries) and has produced **several terabytes of simulated data** in the last years that have been used for mission design and development and testing of the initial versions of some reduction algorithms.
Lessons learnt

• **Start very early.** Simulations (specially for instrument design) are needed from the early stages, and can not wait.

• **Start with a good, design, but allow for changes.** Scientific projects can not be as rigid as S/W engineers would like, but can not be redesigned/enlarged/adapted as often as scientists ask for

• **Expect conflicting requirements from users**

• **Define and sticking to schedules is (very) hard.**

• **Take management very seriously**, specially if the work involves international collaboration

• **Rely on professional S/W development methods for large projects.** Amateur approaches have a limit…
Lessons learnt (ctd)

• **Enforce good programming practices.** Use tracking tools (Mantis, Hudson, SVN, metrics, …), Unit tests, etc.

• **Do not forget to include documentation in your planning.** Specially if you work for ESA (ECSS standard)

• **In a long-term project take into account personnel mobility.** People may leave, in some cases suddenly.

• **In an international collaboration take into account:**
 • National peculiarities, specially about funding stability
 • Increased complexity of coordination
 • Not all partners are equally committed or reliable
Yes, we code in Java

• Used throughout DPAC. Early decision.

• Reasons:
 • Such a complex project requires an object oriented approach → narrowed to C++ or Java
 • Java offers a much more robust and faster development
 • It’s not significantly slower than C, can be even faster

• Quite happy about it after 10 years

See O’Mullane, Luri et al. (2011), Experimental Astronomy (in press)
Some examples of our work
Instrument model: PSF/LSF

The *Point Spread Function (PSF)* describes how the image of a point source looks like when observed by Gaia. A model of the PSF is needed to produce simulations of the CCD observations.

The PSF varies from point to point of the focal plane, thus in fact a “continous variation” model is needed. Furthermore, the Gaia observations for most of the magnitude range are “compressed” into 1-D windows so what is actually observed are *Line Spread Functions (LSF)*. A model for these including cut-out effects is also needed.
PSF model generation process

• Optical model specifications (code V, Astrium)

• Generation of Wave Front Errors (WFE)

• Generation of PSFs at reference focal plane positions and wavelength/color (numerical PSF library) + interpolation between them

• Generation of an LSF library at reference points (several LSFs for each PSF taking into account the AC position) + interpolation between them
Gaia, the universe in 3D: an overview of the mission
Universe model: GUMS

The Gaia Universe Model Snapshot (GUMS) is a full G<20 simulation of the contents of the universe model at T=0 used for validation and testing.

Several versions of GUMS have been generated at various stages of the development. We are currently at GUMS-10.
GUMS-10 Overview

The model has generated 1,000,000,000 galactic objects:

~49% single stars

~51% stellar systems formed by multiple stars and stars with planets

Grand total of 1,600,000,000 individual stars

Visibility based on the integrated magnitude G < 20
Ignoring the real spatial resolution of Gaia
Real sky
https://www.cfa.harvard.edu/~rkirshner/MilkyWay.jpg
Simulated sky
The sky in G magnitude
Gaia, the universe in 3D: an overview of the mission

Radial velocities

Metallicities

log_{10}(n) per square degree
Gaia, the universe in 3D: an overview of the mission

Galactic 3D distribution

- Gaia, the universe in 3D: an overview of the mission
- Galactic 3D distribution
- log₁₀(n) per square parsec
Gaia, the universe in 3D: an overview of the mission
Gaia, the universe in 3D: an overview of the mission

Populations

Log$_{10}(n)$ per square degree

Disk

Thick disk

Spheroid

Bulge

Log$_{10}(n)$ per square degree
HR diagram

log(n) per 0.025 log(K) and 0.37 mag
Gaia, the universe in 3D: an overview of the mission

Extragalactic objects

<table>
<thead>
<tr>
<th></th>
<th>G < 20 mag</th>
<th>Grvs < 17 mag</th>
<th>Grvs < 12 mag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stars in LMC</td>
<td>7,550,000</td>
<td>1,039,000</td>
<td>5,600</td>
</tr>
<tr>
<td>Stars in SMC</td>
<td>1,250,000</td>
<td>161,000</td>
<td>950</td>
</tr>
<tr>
<td>Unresolved galaxies</td>
<td>38,000,000</td>
<td>3,000,000</td>
<td>4,320</td>
</tr>
<tr>
<td>QSO</td>
<td>1,000,000</td>
<td>5,200</td>
<td>11</td>
</tr>
<tr>
<td>Supernovae</td>
<td>50,000</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Log scale per square degree:

- Galaxies
- QSOs
- Supernovae

Log scale per 0.05 mag and 0.05 difference in redshift:

- Galaxies
- QSOs
- Supernovae
Thank you!