30 YEARS OF UKIRT

Gamma-Ray Bursts

Nial Tanvir
University of Leicester
Great site with possibility of complementary observations at other scopes

Integrated observing and data reduction systems expedite rapid triggering and analysis

Observations during UK daytime!!

Infrared allows search for high redshift or dusty sightlines

Flexible scheduling reduces disruption
Insert MSBs into queue and sound alarm.

Developed at Exeter (Allan et al.)
Selection of highlights from our long-standing GRB followup campaign.

Short duration bursts are suspected of being due to compact binary mergers.

Classical long bursts are associated with core collapse of H-stripped massive star.

Some bursts hard to classify and may be core collapse via a different channel.

Some likely to be giant flares in extragalactic SGRs.
• Swift triggers on outburst from SGR (reported as candidate GRB).

• Close proximity to HB9 supernova remnant - possibly kicked?
- First observations UKIRT (T+1.5 hours) obtaining JHK sequence.
- Identify likely IR counterpart - much the least crowded, least extincted and brightest such counterpart for an SGR.
- Initiate long-term monitoring campaign on various telescopes.
SGR 0501+4516

Gemini “true colour” JHK image
GRBs as probes - in brief

Pros:

- Extremely bright and visible into the era of reionization.
- Broad SEDs and detectable in gamma-rays through high intervening columns of gas and dust.
- Afterglows pinpoint their hosts - provide redshifts, chemical enrichment etc. for very faint galaxies.
- Trace massive star formation.

Cons:

- Rare (~2 per day per universe to BATSE and Swift limits).
- Hard to follow up, so samples tend to be inhomogeneous and incomplete.
Reionization epoch - the final frontier!

The last major phase change in the universe.
Tied to the formation of the first collapsed objects.
Very hard to study because only the brightest sources can be seen directly - limited flux means limited information - and they were also very rare beyond $z=7$.
First $z>6$ GRB (Haislip et al. 2006; Kawai et al. 2006)
Mapping reionization

Small hosts have relatively little affect on their environments, providing a cleaner view of the Lyman-alpha damping wing (but harder if host itself is DLA).

GRB050904 Totani et al. 2006
GRB 060923A
(The one that got away)

Only seen in K-band at UKIRT

H-band dropout. Very high-z?

Host seen in deep R-band image
8.55 am: eSTAR submits (actually duplicate) MSBs for followup, but conditions are bad!
Tom Kerr at the scope:

“We'll be lucky to complete the initial 25-min MSB. We're struggling with guiding right now and would normally have to move the windblind in a few minutes. However, doing that will mean it'll be impossible to guide due to wind, and there's no way we can try unguided, the telescope will just blow away!”

9:20 am: Observations start.
Faint K-band counterpart discovered, but early optical find nothing.
$z = 8.23 \pm 0.08$
GRB 090423

Time since GRB 090423 (rest frame seconds)

Time since GRB 090423 (observer seconds)

Flux (10^-12 ergs s^-1 cm^-2)

Luminosity (ergs s^-1)

AB-magnitude

L_{\text{iso}}(0.3-10 \text{ keV}) (\text{ergs/s})
Summary

- A **BIG THANK-YOU** to all the observers and telescope operators who have taken, and continue to take, observations for the GRB followup campaign!

- UKIRT remains key part of the global effort to monitor GRBs and particularly in the identification and location of high redshift bursts - which provide a unique window on the early universe.

- Also shows the crucial requirement of having multiple 4+ m telescopes available for followup and widely distributed around the planet!